1
|
Chang HE, Hossain MS, Song C, Surampudi N, Nesterova G, Gahl WA. Long-term outcomes in nephropathic cystinosis: a review. Pediatr Nephrol 2025:10.1007/s00467-025-06790-6. [PMID: 40369127 DOI: 10.1007/s00467-025-06790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
Nephropathic cystinosis is a lysosomal storage disease due to biallelic pathogenic variants in the CTNS gene encoding the cystine transport protein cystinosin. Dysfunction of cystinosin results in the intralysosomal accumulation of the disulfide cystine, which crystallizes in some tissues and damages many parenchymal organs. Fanconi syndrome is the first presenting sign with all the features of generalized proximal tubular dysfunction. The natural history of cystinosis includes multisystem complications, the most prominent being glomerular failure at 9-10 years. If a kidney transplant prolongs life, other complications occur, with variable frequencies. Some of the most common are hypothyroidism, a distal vacuolar myopathy, pancreatic exocrine and endocrine insufficiency, male hypogonadism, and idiopathic intracranial hypertension. Cystinosis is diagnosed biochemically by measuring the cystine content of leucocyte and molecularly by identifying pathogenic variants in CTNS. Prenatal diagnosis is available. Treatment consists of replacement of kidney tubular losses, symptomatic management of systemic complications, and specific therapy directed at the basic defect, i.e., lysosomal cystine accumulation. This involves the free thiol cysteamine, which can deplete approximately 95% of the lysosomal cystine content. Oral cysteamine therapy has extended the time to kidney failure by approximately 7 years (to a mean of 16 years) and mitigates or prevents late complications of the disease. In addition, cysteamine eyedrops can dissolve corneal cystine crystals within months. Nevertheless, the mean age at death for individuals born between 1985 and 1999 has been 29 years, and earlier diagnosis by newborn screening, treatment with more palatable cystine-depleting agents, and trials with gene therapy are critical current pursuits.
Collapse
Affiliation(s)
- Hayley E Chang
- Cognitive Neurophysiology Lab, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Kuan Hong Wang Lab, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mahin S Hossain
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Chris Song
- Rush University Medical College, Rush University, Chicago, IL, USA
| | - Narayana Surampudi
- NIH Biomedical Translational Research Information System (BTRIS), Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Sarkar T, Gogoi NR, Jana BK, Mazumder B. Formulation Advances in Posterior Segment Ocular Drug Delivery. J Ocul Pharmacol Ther 2025; 41:101-130. [PMID: 39842469 DOI: 10.1089/jop.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release. Traditional therapeutic approaches, such as intravitreal injections, pose significant drawbacks, including patient discomfort, poor compliance, and potential complications. Therefore, understanding the physiology and clearance mechanism of eye could aid in the design of novel formulations that could be noninvasive and deliver drugs to reach the target site is pivotal for effective treatment strategies. This review focuses on recent advances in formulation strategies for posterior segment ocular drug delivery, highlighting their potential to overcome these limitations. Furthermore, the potential of nanocarrier systems such as in-situ gel, niosomes, hydrogels, dendrimers, liposomes, nanoparticles, and nanoemulsions for drug delivery more effectively and selectively is explored, and supplemented with illustrative examples, figures, and tables. This review aims to provide insights into the current state of posterior segment drug delivery, emphasizing the need for interdisciplinary approaches to develop patient-centric, minimally invasive, and effective therapeutic solutions.
Collapse
Affiliation(s)
- Tumpa Sarkar
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
3
|
Tafti MF, Fayyaz Z, Aghamollaei H, Jadidi K, Faghihi S. Drug delivery strategies to improve the treatment of corneal disorders. Heliyon 2025; 11:e41881. [PMID: 39897787 PMCID: PMC11783021 DOI: 10.1016/j.heliyon.2025.e41881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Anterior eye disorders including dry eye syndrome, keratitis, chemical burns, and trauma have varying prevalence rates in the world. Classical dosage forms based-topical ophthalmic drugs are popular treatments for managing corneal diseases. However, current dosage forms of ocular drugs can be associated with major challenges such as the short retention time in the presence of ocular barriers. Developing alternative therapeutic methods is required to overcome drug bioavailability from ocular barriers. Nanocarriers are major platforms and promising candidates for the administration of ophthalmic drugs in an adjustable manner. This paper briefly introduces the advantages, disadvantages, and characteristics of delivery systems for the treatment of corneal diseases. Additionally, advanced technologies such as 3D printing are being considered to fabricate ocular drug carriers and determine drug dosages for personalized treatment. This comprehensive review is gathered through multiple databases such as Google Scholar, PubMed, and Web of Science. It explores information around "ocular drug delivery systems'', "nano-based drug delivery systems'', "engineered nanocarriers'', and "advanced technologies to fabricate personalized drug delivery systems''.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Zeinab Fayyaz
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| |
Collapse
|
4
|
Adwan S, Qasmieh M, Al-Akayleh F, Ali Agha ASA. Recent Advances in Ocular Drug Delivery: Insights into Lyotropic Liquid Crystals. Pharmaceuticals (Basel) 2024; 17:1315. [PMID: 39458956 PMCID: PMC11509982 DOI: 10.3390/ph17101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This review examines the evolution of lyotropic liquid crystals (LLCs) in ocular drug delivery, focusing on their ability to address the challenges associated with traditional ophthalmic formulations. This study aims to underscore the enhanced bioavailability, prolonged retention, and controlled release properties of LLCs that significantly improve therapeutic outcomes. Methods: This review synthesizes data from various studies on both bulk-forming LLCs and liquid crystal nanoparticles (LCNPs). It also considers advanced analytical techniques, including the use of machine learning and AI-driven predictive modeling, to forecast the phase behavior and molecular structuring of LLC systems. Emerging technologies in biosensing and real-time diagnostics are discussed to illustrate the broader applicability of LLCs in ocular health. Results: LLCs are identified as pivotal in promoting targeted drug delivery across different regions of the eye, with specific emphasis on the tailored optimization of LCNPs. This review highlights principal categories of LLCs used in ocular applications, each facilitating unique interactions with physiological systems to enhance drug efficacy and safety. Additionally, novel applications in biosensing demonstrate LLCs' capacity to improve diagnostic processes. Conclusions: Lyotropic liquid crystals offer transformative potential in ocular drug delivery by overcoming significant limitations of conventional delivery methods. The integration of predictive technologies and biosensing applications further enriches the utility of LLCs, indicating a promising future for their use in clinical settings. This review points to continued advancements and encourages further research in LLC technology to maximize its therapeutic benefits.
Collapse
Affiliation(s)
- Samer Adwan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Madeiha Qasmieh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, Petra University, Amman 11196, Jordan;
| | | |
Collapse
|
5
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
6
|
Sun M, Niu J, Zhang Y, Wang M, Shen Y, Chen X, Mao Y, Li Q. Keratin Formed Bioadhesive Ophthalmic Gel for the Bacterial Conjunctivitis Treatment. AAPS PharmSciTech 2024; 25:77. [PMID: 38589761 DOI: 10.1208/s12249-024-02772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Keratin has the potential to function as the gel matrix in an ophthalmic formulation for the encapsulation of the macrolide antibiotic azithromycin. The quality of this formulation was thoroughly evaluated through various analyses, such as in vitro release assessment, rheological examination, intraocular retention studies in rabbits, assessment of bacteriostatic efficacy, and safety evaluations. It is worth mentioning that the gel demonstrated shear thinning properties and exhibited characteristics of an elastic solid, thereby confirming its structural stability. The gel demonstrated a notable affinity for mucosal surfaces in comparison to traditional azithromycin aqueous solutions. In vitro release testing revealed that drug release transpired via diffusion mechanisms, following a first-order kinetic release pattern. Additionally, the formulated gel exhibited remarkable antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in bacteriostatic evaluations. Lastly, safety assessments confirmed that the gel eye drops induced minimal irritation and displayed no apparent cytotoxicity, indicating their good safety and biocompatibility for ocular application. Thus, these findings indicated that the prepared azithromycin gel eye drops complied with the requisite standards for ophthalmic preparations.
Collapse
Affiliation(s)
- Mengjuan Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Jialin Niu
- Ophthalmology Department, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050057, China
| | - Yin Zhang
- Ophthalmology Department, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050057, China
| | - Mengrong Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu Province, China
| | - Yujuan Mao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu Province, China.
| | - Qian Li
- School of Life Science & Technology China, Pharmaceutical University24# Tongjiaxiang , Nanjing, 210009, China.
| |
Collapse
|
7
|
Csorba A, Katona G, Budai-Szűcs M, Balogh-Weiser D, Molnár P, Maka E, Kazsoki A, Vajna M, Zelkó R, Nagy ZZ, Balogh GT. A Comparative Pharmacokinetic Study for Cysteamine-Containing Eye Drops as an Orphan Topical Therapy in Cystinosis. Int J Mol Sci 2024; 25:1623. [PMID: 38338900 PMCID: PMC10855117 DOI: 10.3390/ijms25031623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cystinosis is a low-prevalence lysosomal storage disease. The pathomechanism involves abnormal functioning of the cystinosine lysosomal cystine transporter (CTNS), causing intraliposomal accumulation of the amino acid cysteine disulfide, which crystallizes and deposits in several parts of the body. The most common ophthalmic complication of cystinosis is the deposition of "gold dust" cystine crystals on the cornea, which already occurs in infancy and leads to severe photosensitivity and dry eyes as it gradually progresses with age. In the specific treatment of cystinosis, preparations containing cysteamine (CYA) are used. The availability of commercialized eyedrops for the targeted treatment is scarce, and only Cystadrops® are commercially available with strong limitations. Thus, magistral CYA-containing compounded eyedrops (CYA-CED) could have a key role in patient care; however, a rationally designed comprehensive study on the commercialized and magistral products is still missing. This work aims to build up a comprehensive study about commercialized and magistral CYA eye drops, involving pharmacokinetic and physicochemical characterization (applying mucoadhesivity, rheology test, investigation of drug release, and parallel artificial membrane permeability assays), as well as ex vivo tests, well supported by statistical analysis.
Collapse
Affiliation(s)
- Anita Csorba
- Department of Ophthalmology, Semmelweis University, Mária Street 39, H-1085 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Diána Balogh-Weiser
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Molnár
- Molteam Llc., Mélyfúró Street 4, H-1151 Budapest, Hungary
| | - Erika Maka
- Department of Ophthalmology, Semmelweis University, Mária Street 39, H-1085 Budapest, Hungary
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - Márton Vajna
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária Street 39, H-1085 Budapest, Hungary
| | - György T. Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| |
Collapse
|
8
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
9
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
10
|
Sanap SN, Bisen AC, Agrawal S, Kedar A, Bhatta RS. Ophthalmic nano-bioconjugates: critical challenges and technological advances. Ther Deliv 2023; 14:419-441. [PMID: 37535389 DOI: 10.4155/tde-2023-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.
Collapse
Affiliation(s)
- Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Bal-Öztürk A, Özcan-Bülbül E, Gültekin HE, Cecen B, Demir E, Zarepour A, Cetinel S, Zarrabi A. Application of Convergent Science and Technology toward Ocular Disease Treatment. Pharmaceuticals (Basel) 2023; 16:445. [PMID: 36986546 PMCID: PMC10053244 DOI: 10.3390/ph16030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul 34396, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Ece Özcan-Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Türkiye
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
12
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
13
|
Shin CS, Veettil RA, Sakthivel TS, Adumbumkulath A, Lee R, Zaheer M, Kolanthai E, Seal S, Acharya G. Noninvasive Delivery of Self-Regenerating Cerium Oxide Nanoparticles to Modulate Oxidative Stress in the Retina. ACS APPLIED BIO MATERIALS 2022; 5:5816-5825. [PMID: 36441967 DOI: 10.1021/acsabm.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diseases affecting the retina, such as age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and retinal vein occlusions, are currently treated by the intravitreal injection of drug formulations. These disease pathologies are driven by oxidative damage due to chronic high concentrations of reactive oxygen species (ROS) in the retina. Intravitreal injections often induce retinal detachment, intraocular hemorrhage, and endophthalmitis. Furthermore, the severe eye pain associated with these injections lead to patient noncompliance and treatment discontinuation. Hence, there is a critical need for the development of a noninvasive therapy that is effective for a prolonged period for treating retinal diseases. In this study, we developed a noninvasive cerium oxide nanoparticle (CNP) delivery wafer (Cerawafer) for the modulation of ROS in the retina. We fabricated Cerawafer loaded with CNP and determined its SOD-like enzyme-mimetic activity and ability to neutralize ROS generated in vitro. We demonstrated Cerawafer's ability to deliver CNP in a noninvasive fashion to the retina in healthy mouse eyes and the CNP retention in the retina for more than a week. Our studies have demonstrated the in vivo efficacy of the Cerawafer to modulate ROS and associated down-regulation of VEGF expression in the retinas of very-low-density lipoprotein receptor knockout (vldlr-/-) mouse model. The development of a Cerawafer nanotherapeutic will fulfill a hitherto unmet need. Currently, there is no such therapeutic available, and the development of a Cerawafer nanotherapeutic will be a major advancement in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Crystal S Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77030, United States
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States.,College of Medicine, Biionix Cluster, University of Central Florida, Orlando, Florida 32827, United States
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Ross M, Mofford J, Tian JJ, Muirhead B, Hicks EA, Sheardown L, Sheardown H. Thermo-responsive and mucoadhesive gels for the treatment of cystinosis. BIOMATERIALS ADVANCES 2022; 144:213235. [PMID: 36495841 DOI: 10.1016/j.bioadv.2022.213235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mucoadhesive thermogels were developed by crosslinking poly(n-isopropylacrylamide) based polymers with chitosan and incorporating disulfide bridges, capable of releasing cysteamine upon interaction with mucin, for the treatment of cystinosis. Through crosslinking with chitosan and incorporating varying concentrations of the disulfide monomer into the polymer backbone, the extent of how mucoadhesive the developed thermogels were could be controlled. Through disulfide bridging with mucin, the thermogels released 6 to 10 μg of the conjugate model 2-mercaptopyridine over five days. Utilizing chitosan as the crosslinker, the developed thermogels were shown to degrade to a statistically higher extent following incubation with lysozyme, the highest concentration tear enzyme, by gravimetric and rheologic analysis. The developed thermogels were extensively tested in vivo utilizing a rat model in which materials were applied directly to the corneal surface and a rabbit model in which thermogels were applied to the inferior fornix. With the developed models, there was no adverse reactions or visual discomfort incurred following application of the thermogels. It has been demonstrated that the thermogels produced can be applied to the inferior fornix and release the stable conjugated payload over several days. The developed thermogel was designed to improve upon the current clinical treatment options for ocular cystinosis which are acidic topical formulations that require reapplication multiple times a day.
Collapse
Affiliation(s)
- Mitchell Ross
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jonathan Mofford
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jennifer JingYuan Tian
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Benjamin Muirhead
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Emily Anne Hicks
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Lindsay Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
15
|
Dourado LFN, Silva CND, Gonçalves RS, Inoue TT, de Lima ME, Cunha-Júnior ADS. Improvement of PnPP-19 peptide bioavailability for glaucoma therapy: Design and application of nanowafers based on PVA. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Jimenez J, Resnick JL, Chaudhry AB, Gertsman I, Nischal KK, DiLeo MV. Ocular biodistribution of cysteamine delivered by a sustained release microsphere/thermoresponsive gel eyedrop. Int J Pharm 2022; 624:121992. [PMID: 35809831 DOI: 10.1016/j.ijpharm.2022.121992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The objective of the investigation was to determine the ocular biodistribution of cysteamine, a reducing agent used for treatment of cystine crystals in cystinosis, following topical administration of a sustained release formulation and traditional eyedrop formulation. To the right eye only, rabbits received a 50 µL drop of 0.44% cysteamine eyedrops at one drop per waking hour for 2, 6, 12, and 24 h. A second group received one 100 µL drop of a sustained release formulation containing encapsulated cysteamine microspheres suspended in a thermoresponsive gel. Upon serial sacrifice, ocular tissues from both eyes and plasma were obtained and quantified for cysteamine using LC-MS/MS. Cysteamine was detected in the cornea, aqueous humor and vitreous humor. Systemic plasma concentrations of cysteamine from treatment groups were below the limit of detection. As expected, 0.44% cysteamine eyedrops when administered hourly maintained drug concentrations within the cornea at a magnitude 5 times higher than a single dose of the sustained release formulation over 12 h. The sustained release formulation maintained cysteamine presentation across 12 h from a single drop. These studies demonstrate distribution of cysteamine to the eye following topical administration, including high drug uptake to the cornea and low systemic distribution.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jayde L Resnick
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ahmad B Chaudhry
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Ken K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Morgan V DiLeo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
17
|
Martín-Sabroso C, Alonso-González M, Fernández-Carballido A, Aparicio-Blanco J, Córdoba-Díaz D, Navarro-García F, Córdoba-Díaz M, Torres-Suárez AI. Limitations and Challenges in the Stability of Cysteamine Eye Drop Compounded Formulations. Pharmaceuticals (Basel) 2021; 15:ph15010002. [PMID: 35056058 PMCID: PMC8779799 DOI: 10.3390/ph15010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Damián Córdoba-Díaz
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Federico Navarro-García
- Microbiology and Parasitology Department, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Córdoba-Díaz
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana I. Torres-Suárez
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941735; Fax: +34-913941736
| |
Collapse
|
18
|
Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur J Pharm Biopharm 2021; 161:80-99. [DOI: 10.1016/j.ejpb.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
|
19
|
Jimenez J, Washington MA, Resnick JL, Nischal KK, Fedorchak MV. A sustained release cysteamine microsphere/thermoresponsive gel eyedrop for corneal cystinosis improves drug stability. Drug Deliv Transl Res 2021; 11:2224-2238. [PMID: 33543397 DOI: 10.1007/s13346-020-00890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Cystinosis is a rare, metabolic, recessive genetic disease in which the intralysosomal accumulation of cystine leads to system wide organ and tissue damage. In the eye, cystine accumulates in the cornea as corneal cystine crystals and severely impacts vision. Corneal cystine crystals are treated with cysteamine eyedrops when administrated 6 to 12 times day and used within 1 week. The strict dosing regimen and poor stability are inconvenient and add to the burden of therapy. To reduce the dosing frequency and improve the stability, we present reformulation of cysteamine into a novel controlled release eyedrop. In this work, we characterize and evaluate a topical drug delivery system comprised of encapsulated cysteamine in polymer microspheres with a thermoresponsive gel carrier. Spray-dried encapsulation of cysteamine was performed. In vitro cysteamine release, stability, and ocular irritation and corneal permeation were evaluated. The data suggest that encapsulated cysteamine improves the stability to 7 weeks when compared with 1-week aqueous cysteamine eyedrops. Release studies from one drop of our system show that cysteamine release was present for 24 h and above the minimum cysteamine eyedrop amount (6 drops). Cysteamine from our system also resulted in negligible irritation and enhanced permeation when compared with traditional cysteamine eyedrops. In vivo studies were implemented to support ease of administration, tolerability, and retention for 24 h. These studies suggest that our controlled release delivery system may provide stable cysteamine from a safe, once daily gel eyedrop.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Michael A Washington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jayde L Resnick
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ken K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
20
|
Castro-Balado A, Mondelo-García C, Varela-Rey I, Moreda-Vizcaíno B, Sierra-Sánchez JF, Rodríguez-Ares MT, Hermelo-Vidal G, Zarra-Ferro I, González-Barcia M, Yebra-Pimentel E, Giráldez-Fernández MJ, Otero-Espinar FJ, Fernández-Ferreiro A. Recent Research in Ocular Cystinosis: Drug Delivery Systems, Cysteamine Detection Methods and Future Perspectives. Pharmaceutics 2020; 12:E1177. [PMID: 33287176 PMCID: PMC7761701 DOI: 10.3390/pharmaceutics12121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs. Although renal damage prevails during initial stages, the deposition of cystine crystals in the cornea causes severe ocular manifestations. At present, cysteamine is the only topical effective treatment for ocular cystinosis. The lack of investment by the pharmaceutical industry, together with the limited stability of cysteamine, make it available only as two marketed presentations (Cystaran® and Cystadrops®) and as compounding formulations prepared in pharmacy departments. Even so, new drug delivery systems (DDSs) need to be developed, allowing more comfortable dosage schedules that favor patient adherence. In the last decades, different research groups have focused on the development of hydrogels, nanowafers and contact lenses, allowing a sustained cysteamine release. In parallel, different determination methods and strategies to increase the stability of the formulations have also been developed. This comprehensive review aims to compile all the challenges and advances related to new cysteamine DDSs, analytical determination methods, and possible future therapeutic alternatives for treating cystinosis.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Iria Varela-Rey
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Beatriz Moreda-Vizcaíno
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Jesús F. Sierra-Sánchez
- Pharmacy Department, Hospital de Jerez de la Frontera, Jerez de la Frontera, 11407 Cádiz, Spain;
| | - María Teresa Rodríguez-Ares
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Gonzalo Hermelo-Vidal
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Eva Yebra-Pimentel
- Department of Applied Physics, Optometry, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.Y.-P.); (M.J.G.-F.)
| | - María Jesús Giráldez-Fernández
- Department of Applied Physics, Optometry, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.Y.-P.); (M.J.G.-F.)
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| |
Collapse
|
21
|
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10:27835-27855. [PMID: 35516960 PMCID: PMC9055630 DOI: 10.1039/d0ra04971a] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ocular diseases have a significant effect on vision and quality of life. Drug delivery to ocular tissues is a challenge to formulation scientists. The major barriers to delivering drugs to the anterior and posterior segments include physiological barriers (nasolacrimal drainage, blinking), anatomical barriers (static and dynamic), efflux pumps and metabolic barriers. The static barriers comprise the different layers of the cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. The tight junctions of the blood-retinal barrier (BRB) restrict systemically administered drugs from entering the retina. Nanocarriers have been found to be effective at overcoming the issues associated with conventional ophthalmic dosage forms. Various nanocarriers, including nanodispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, niosomes, and dendrimers, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic sites. In this review, various nanomedicines and their application for ophthalmic delivery of therapeutics are discussed. Additionally, scale-up and clinical status are also addressed to understand the current scenario for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Prem Prakash Singh
- Formulation Development, Slayback Pharma India LLP Hyderabad Telangana 500072 India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
- Birla Institute of Technology & Science (BITS) Pilani, Dubai Campus UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| |
Collapse
|
22
|
Thoene JG, DelMonte MA, Mullet J. Microvesicle delivery of a lysosomal transport protein to ex vivo rabbit cornea. Mol Genet Metab Rep 2020; 23:100587. [PMID: 32280591 PMCID: PMC7138922 DOI: 10.1016/j.ymgmr.2020.100587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic use of transmembrane proteins is limited because of irreversible denaturation when away from their native lipid membrane. Mutations in lysosomal membrane transport proteins cause many lethal disorders including cystinosis which results from mutations in CTNS, which codes for the lysosomal cystine transport protein, cystinosin. Cystinosin-deficient fibroblasts, including keratocytes (corneal fibroblasts) accumulate lysosomal cystine. Cystinosis patients develop highly painful corneal cystine crystals, resulting in severe visually debilitating photophobia. The only available therapy is daily treatment with cysteamine eye drops. We have previously shown that microvesicles containing functional cystinosin are spontaneously produced by infecting Spodoptera frugiperda cells (Sf9) with baculovirus containing human wt CTNS. Infecting Sf9 cells for 3 days at a MOI of 1 yields 1011microvesicles /ml with a modal diameter of 90 nm. Addition of these vesicles to cultures of cystinotic fibroblasts produces cystine depletion over the course of 96 h, which persists for 2 weeks. In this paper we show that addition of such microvesicles containing cystinosinGFP to ex vivo rabbit ocular globes yields punctate perinuclear green fluorescence in the corneal keratocytes. These results support potential therapeutic use of these cystinosin containing microvesicles in treating cystinotic corneal keratopathy with the advantage of administering twice/month instead of daily topical administration.
Collapse
Affiliation(s)
- Jess G Thoene
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monte A DelMonte
- Department of Ophthalmology and Visual Sciences, Division of Pediatric Ophthalmology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jodi Mullet
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Jimenez J, Sakthivel M, Nischal KK, Fedorchak MV. Drug delivery systems and novel formulations to improve treatment of rare corneal disease. Drug Discov Today 2019; 24:1564-1574. [PMID: 30872110 DOI: 10.1016/j.drudis.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
As the field of ocular drug delivery grows so does the potential for novel drug discovery or reformulation in lesser-known diseases of the eye. In particular, rare corneal diseases are an interesting area of research because drug delivery is limited to the outermost tissue of the eye. This review will highlight the opportunities and challenges of drug reformulation and alternative treatment approaches for rare corneal diseases. The barriers to effective drug delivery and proposed solutions in development will be discussed along with an overview of corneal rare disease resources, their current treatments and ophthalmic drug delivery systems that could benefit such cases. The regulatory considerations for effective translation of orphan-designated products will also be discussed.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meera Sakthivel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kanwal K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Biswas S, Sornalingam K. The Ocular Status of Cystinosis Patients Receiving a Hospital Pharmacy-Made Preparation of Cysteamine Eye Drops: A Case Series. Ophthalmol Ther 2018; 8:125-136. [PMID: 30519924 PMCID: PMC6393247 DOI: 10.1007/s40123-018-0156-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 12/01/2022] Open
Abstract
Introduction Infantile nephropathic cystinosis (INC) is an autosomal recessive lysosomal disorder in which patients develop deposits of cystine crystals in their kidneys and corneas from a young age. Methods We conducted a retrospective analysis of children with INC seen by ophthalmologists at the Manchester Royal Eye Hospital between 2002 and 2018, to evaluate clinical findings, symptoms and treatment. Results Twenty-two children diagnosed with INC from age 0 (prenatally) to 11 years were assessed. All evaluable patients had corneal cystine crystal deposits, and 15 had mild to moderate photophobia. Ten patients had other ocular conditions including blepharitis/chalzion (n = 6), swollen optic nerve (n = 3), punctate epitheliopathy (n = 3), corneal scarring (n = 1),and elevated intraocular pressure (n = 2). Confocal imaging identified nerve abnormalities in two patients (enlarged corneal nerve + abnormal-looking tortuous nerves in one patient and beaded nerves in the sub-basal plexus in the other), both of whom had significant crystal deposition in the anterior stroma. Visual acuity was relatively unaffected. All 22 patients were receiving oral cysteamine, and 21 were applying cysteamine eye drops (galenic preparation of 0.55% concentration, compounded by a hospital pharmacy). Recommended application frequency was at least eight times per day in all patients with dosing information available. Conclusions This case series of patients with INC highlights the consistent pattern of corneal cystine crystal deposition, which is universally present from a young age in this condition, and the high incidence of photophobia even in young children. Corneal manifestations of INC persisted despite frequent administration of the hospital pharmacy-made eye drop preparation. Reasons for this lack of efficacy may include the lag period between diagnosis and first prescription of cysteamine eye drops and the difficulty in maintaining rigorous compliance with this treatment. In addition, the challenge for patients of maintaining optimal storage conditions may adversely affect the stability and efficacy of cysteamine within this preparation. Funding Editorial assistance was funded by Orphan Europe Ltd.
Collapse
Affiliation(s)
- Susmito Biswas
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester, UK.
| | - Krishanthy Sornalingam
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018; 10:pharmaceutics10010028. [PMID: 29495528 PMCID: PMC5874841 DOI: 10.3390/pharmaceutics10010028] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.
Collapse
|
27
|
Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv Drug Deliv Rev 2018; 126:67-95. [PMID: 29339145 DOI: 10.1016/j.addr.2018.01.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The impact of proteins and peptides on the treatment of various conditions including ocular diseases over the past few decades has been advanced by substantial breakthroughs in structural biochemistry, genetic engineering, formulation and delivery approaches. Formulation and delivery of proteins and peptides, such as monoclonal antibodies, aptamers, recombinant proteins and peptides to ocular tissues poses significant challenges owing to their large size, poor permeation and susceptibility to degradation. A wide range of advanced drug delivery systems including polymeric controlled release systems, cell-based delivery and nanowafers are being exploited to overcome the challenges of frequent administration to ocular tissues. The next generation systems integrated with new delivery technologies are anticipated to generate improved efficacy and safety through the expansion of the therapeutic target space. This review will highlight recent advances in formulation and delivery strategies of protein and peptide based biopharmaceuticals. We will also describe the current state of proteins and peptides based ocular therapy and future therapeutic opportunities.
Collapse
|
28
|
Makuloluwa AK, Shams F. Cysteamine hydrochloride eye drop solution for the treatment of corneal cystine crystal deposits in patients with cystinosis: an evidence-based review. Clin Ophthalmol 2018; 12:227-236. [PMID: 29416314 PMCID: PMC5789046 DOI: 10.2147/opth.s133516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystinosis is a rare, autosomal recessive disorder leading to defective transport of cystine out of lysosomes. Subsequent cystine crystal accumulation can occur in various tissues, including the ocular surface. This review explores the efficacy of cysteamine hydrochloride eye drops in the treatment of corneal cystine crystal accumulation and its safety profile.
Collapse
Affiliation(s)
| | - Fatemeh Shams
- Tennent Institute of Ophthalmology, Gartnavel General Hospital, Glasgow, UK
| |
Collapse
|
29
|
Lyseng-Williamson KA. Cystadrops® (cysteamine hydrochloride 0.55% viscous eye-drops solution) in treating corneal cystine crystal deposits in patients with cystinosis: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0398-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Over the past few decades, cystinosis, a rare lysosomal storage disorder, has evolved into a treatable metabolic disease. The increasing understanding of its pathophysiology has made cystinosis a prototype disease, delivering new insights into several fundamental biochemical and cellular processes. RECENT FINDINGS In this review, we aim to provide an overview of the latest advances in the pathogenetic, clinical, and therapeutic aspects of cystinosis. SUMMARY The development of alternative therapeutic monitoring strategies and new systemic and ocular cysteamine formulations might improve outcome of cystinosis patients in the near future. With the dawn of stem cell based therapy and new emerging gene-editing technologies, novel tools have become available in the search for a cure for cystinosis.
Collapse
|
31
|
Al-Hemidan A, Shoughy SS, Kozak I, Tabbara KF. Efficacy of topical cysteamine in nephropathic cystinosis. Br J Ophthalmol 2017; 101:1234-1237. [DOI: 10.1136/bjophthalmol-2016-309278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/31/2016] [Accepted: 12/11/2016] [Indexed: 11/03/2022]
|