1
|
Cao X, Li K, Wang J, Xie X, Sun L. PBPK model of pegylated liposomal doxorubicin to simultaneously predict the concentration-time profile of encapsulated and free doxorubicin in tissues. Drug Deliv Transl Res 2025; 15:1342-1362. [PMID: 39103592 DOI: 10.1007/s13346-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict the concentrations of encapsulated and free doxorubicin in plasma and tissues in mice after intravenous injection of PEGylated liposomes (Doxil®). The PBPK model used in this study contains liposomes and free doxorubicin disposition components. The free doxorubicin disposition component was used to simulate the disposition of free doxorubicin produced by mononuclear phagocyte system (MPS)-degrading liposomes. The liver, spleen, kidneys, and lungs contain an additional MPS subcompartment. These compartments are interconnected through blood and lymphatic circulation. The model was validated strictly by four doses of external observed plasma and tissue concentration-time profiles. The fold error (FE) values were almost all within threefold. The sensitivity analysis revealed that the MPS-related parameters greatly influenced the model. The predicted in vivo distribution characteristics of the doxorubicin liposomes and doxorubicin solution were consistent with the observed values. The PBPK model was established based on the physiological mechanism and parameters of practical significance that can be measured in vitro. Thus, it can be used to study the pharmacokinetic properties of liposomes. This study also provides a reference for the establishment of liposome PBPK model.
Collapse
Affiliation(s)
- Xuewei Cao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Kejun Li
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jingyu Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xiaoqian Xie
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Le Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
2
|
Chao FC, Manaia EB, Ponchel G, Hsieh CM. A physiologically-based pharmacokinetic model for predicting doxorubicin disposition in multiple tissue levels and quantitative toxicity assessment. Biomed Pharmacother 2023; 168:115636. [PMID: 37826938 DOI: 10.1016/j.biopha.2023.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Doxorubicin is a widely-used chemotherapeutic drug, however its high toxicity poses a significant challenge for its clinical use. To address this issue, a physiologically-based pharmacokinetic (PBPK) model was implemented to quantitatively assess doxorubicin toxicity at cellular scale. Due to its unique pharmacokinetic behavior (e.g. high volume of distribution and affinity to extra-plasma tissue compartments), we proposed a modified PBPK model structure and developed the model with multispecies extrapolation to compensate for the limitation of obtaining clinical tissue data. Our model predicted the disposition of doxorubicin in multiple tissues including clinical tissue data with an overall absolute average fold error (AAFE) of 2.12. The model's performance was further validated with 8 clinical datasets in combined with intracellular doxorubicin concentration with an average AAFE of 1.98. To assess the potential cellular toxicity, toxicity levels and area under curve (AUC) were defined for different dosing regimens in toxic and non-toxic scenarios. The cellular concentrations of doxorubicin in multiple organ sites associated with commonly observed adverse effects (AEs) were simulated and calculated the AUC for quantitative assessments. Our findings supported the clinical dosing regimen of 75 mg/m2 with a 21-day interval and suggest that slow infusion and separated single high doses may lower the risk of developing AEs from a cellular level, providing valuable insights for the risk assessment of doxorubicin chemotherapy. In conclusion, our work highlights the potential of PBPK modelling to provide quantitative assessments of cellular toxicity and supports the use of clinical dosing regimens to mitigate the risk of adverse effects.
Collapse
Affiliation(s)
- Fang-Ching Chao
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay 91400, France
| | - Eloísa Berbel Manaia
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay 91400, France
| | - Gilles Ponchel
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay 91400, France.
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
3
|
Plasma Pharmacokinetics and Tissue Distribution of Doxorubicin in Rats following Treatment with Astragali Radix. Pharmaceuticals (Basel) 2022; 15:ph15091104. [PMID: 36145325 PMCID: PMC9505068 DOI: 10.3390/ph15091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOX) is an essential component in chemotherapy, and Astragali Radix (AR) is a widely used tonic herbal medicine. The combination of DOX and AR offers widespread, well-documented advantages in treating cancer, e.g., reducing the risk of adverse effects. This study mainly aims to uncover the impact of AR on DOX disposition in vivo. Rats received a single intravenous dose of 5 mg/kg DOX following a single-dose co-treatment or multiple-dose pre-treatment of AR (10 g/kg × 1 or × 10). The concentrations of DOX in rat plasma and six tissues, including heart, liver, lung, kidney, spleen, and skeletal muscle, were determined by a fully validated LC-MS/MS method. A network-based approach was further employed to quantify the relationships between enzymes that metabolize and transport DOX and the targets of nine representative AR components in the human protein−protein interactome. We found that short-term (≤10 d) AR administration was ineffective in changing the plasma pharmacokinetics of DOX in terms of the area under the concentration−time curve (AUC, 1303.35 ± 271.74 μg/L*h versus 1208.74 ± 145.35 μg/L*h, p > 0.46), peak concentrations (Cmax, 1351.21 ± 364.86 μg/L versus 1411.01 ± 368.38 μg/L, p > 0.78), and half-life (t1/2, 31.79 ± 5.12 h versus 32.05 ± 6.95 h, p > 0.94), etc. Compared to the isotype control group, DOX concentrations in six tissues slightly decreased under AR pre-administration but only showed statistical significance (p < 0.05) in the liver. Using network analysis, we showed that five of the nine representative AR components were not localized to the vicinity of the DOX disposition-associated module. These findings suggest that AR may mitigate DOX-induced toxicity by affecting drug targets rather than drug disposition.
Collapse
|
4
|
Physiologically Based Pharmacokinetic Modelling and Simulation to Predict the Plasma Concentration Profile of Doxorubicin. Pharmaceutics 2022; 14:pharmaceutics14030541. [PMID: 35335919 PMCID: PMC8949582 DOI: 10.3390/pharmaceutics14030541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Doxorubicin (DOX) is still an important anticancer agent despite its tricky pharmacokinetics (PK) and toxicity potential. The advent of systems pharmacology enables the construction of PK models able to predict the concentration profiles of drugs and shed light on the underlying mechanisms involved in PK and pharmacodynamics (PD). By utilizing existing published data and by analysing two clinical case studies we attempt to create physiologically based pharmacokinetic (PBPK) models for DOX using widely accepted methodologies. Based on two different approaches on three different key points we derived eight plausible models. The validation of the models provides evidence that is all performing as designed and opens the way for further exploitation by integrating metabolites and pharmacogenomic information.
Collapse
|
5
|
Ebeling Barbier C, Heindryckx F, Lennernäs H. Limitations and Possibilities of Transarterial Chemotherapeutic Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms222313051. [PMID: 34884853 PMCID: PMC8658005 DOI: 10.3390/ijms222313051] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Because diagnostic tools for discriminating between hepatocellular carcinoma (HCC) and advanced cirrhosis are poor, HCC is often detected in a stage where transarterial chemoembolization (TACE) is the best treatment option, even though it provides a poor survival gain. Despite having been used worldwide for several decades, TACE still has many limitations. First, there is a vast heterogeneity in the cellular composition and metabolism of HCCs as well as in the patient population, which renders it difficult to identify patients who would benefit from TACE. Often the delivered drug does not penetrate sufficiently selectively and deeply into the tumour and the drug delivery system is not releasing the drug at an optimal clinical rate. In addition, therapeutic effectiveness is limited by the crosstalk between the tumour cells and components of the cirrhotic tumour microenvironment. To improve this widely used treatment of one of our most common and deadly cancers, we need to better understand the complex interactions between drug delivery, local pharmacology, tumour targeting mechanisms, liver pathophysiology, patient and tumour heterogeneity, and resistance mechanisms. This review provides a novel and important overview of clinical data and discusses the role of the tumour microenvironment and lymphatic system in the cirrhotic liver, its potential response to TACE, and current and possible novel DDSs for locoregional treatment.
Collapse
Affiliation(s)
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden;
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-471-4317; Fax: +46-18-471-4223
| |
Collapse
|
6
|
Li H, Yuan H, Middleton A, Li J, Nicol B, Carmichael P, Guo J, Peng S, Zhang Q. Next generation risk assessment (NGRA): Bridging in vitro points-of-departure to human safety assessment using physiologically-based kinetic (PBK) modelling - A case study of doxorubicin with dose metrics considerations. Toxicol In Vitro 2021; 74:105171. [PMID: 33848589 DOI: 10.1016/j.tiv.2021.105171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Using the chemical doxorubicin (DOX), the objective of the present study was to evaluate the impact of dose metrics selection in the new approach method of integrating physiologically-based kinetic (PBK) modelling and relevant human cell-based assays to inform a priori the point of departure for human health risk. We reviewed the literature on the clinical consequences of DOX treatment to identify dosing scenarios with no or mild cardiotoxicity observed. Key concentrations of DOX that induced cardiomyocyte toxicity in vitro were derived from studies of our own and others. A human population-based PBK model of DOX was developed and verified against pharmacokinetic data. The model was then used to predict plasma and extracellular and intracellular heart concentrations of DOX under selected clinical settings and compared with in vitro outcomes, based on several dose metrics: Cmax (maximum concentration) or AUC (area under concentration-time curve) in free or total form of DOX. We found when using in vitro assays to predict cardiotoxicity for DOX, AUC is a better indicator. Our study illustrates that when appropriate dose metrics are used, it is possible to combine PBK modelling with in vitro-derived toxicity information to define margins of safety and predict low-risk human exposure levels.
Collapse
Affiliation(s)
- Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Haitao Yuan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Alistair Middleton
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Sallustio BC, Boddy AV. Is there scope for better individualisation of anthracycline cancer chemotherapy? Br J Clin Pharmacol 2020; 87:295-305. [PMID: 33118175 DOI: 10.1111/bcp.14628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Anthracyclines are used to treat solid and haematological cancers, particularly breast cancers, lymphomas and childhood cancers. Myelosuppression and cardiotoxicity are the primary toxicities that limit treatment duration and/or intensity. Cardiotoxicity, particularly heart failure, is a leading cause of morbidity and mortality in cancer survivors. Cumulative anthracycline dose is a significant predictor of cardiotoxicity risk, suggesting a role for anthracycline pharmacokinetic variability. Population pharmacokinetic modelling in children has shown that doxorubicin clearance in the very young is significantly lower than in older children, potentially contributing to their higher risk of cardiotoxicity. A model of doxorubicin clearance based on body surface area and age offers a patient-centred dose-adjustment strategy that may replace the current disparate initial-dose selection tools, providing a rational way to compensate for pharmacokinetic variability in children aged <7 years. Population pharmacokinetic models in adults have not adequately addressed older ages, obesity, hepatic and renal dysfunction, and potential drug-drug interactions to enable clinical application. Although candidate gene and genome-wide association studies have investigated relationships between genetic variability and anthracycline pharmacokinetics or clinical outcomes, there have been few clinically significant reproducible associations. Precision-dosing of anthracyclines is currently hindered by lack of clinically useful pharmacokinetic targets and models that predict cumulative anthracycline exposures. Combined with known risk factors for cardiotoxicity, the use of advanced echocardiography and biomarkers, future validated pharmacokinetic targets and predictive models could facilitate anthracycline precision dosing that truly maximises efficacy and provides individualised early intervention with cardioprotective therapies in patients at risk of cardiotoxicity.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia.,Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Alan V Boddy
- School of Pharmacy and Medical Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Lee JB, Zhou S, Chiang M, Zang X, Kim TH, Kagan L. Interspecies prediction of pharmacokinetics and tissue distribution of doxorubicin by physiologically-based pharmacokinetic modeling. Biopharm Drug Dispos 2020; 41:192-205. [PMID: 32342986 DOI: 10.1002/bdd.2229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
The aim of the study was to develop a physiologically-based pharmacokinetic (PBPK) model to describe and predict whole-body disposition of doxorubicin following intravenous administration. The PBPK model was established using previously published data in mice and included 10 tissue compartments: lungs, heart, brain, muscle, kidneys, pancreas, intestine, liver, spleen, adipose tissue, and plasma. Individual tissues were described by either perfusion-limited or permeability-limited models. All parameters were simultaneously estimated and the final model was able to describe murine data with good precision. The model was used for predicting doxorubicin disposition in rats, rabbits, dogs, and humans using interspecies scaling approaches and was qualified using plasma and tissue observed data. Reasonable prediction of the plasma pharmacokinetics and tissue distribution was achieved across all species. In conclusion, the PBPK model developed based on a rich dataset obtained from mice, was able to reasonably predict the disposition of doxorubicin in other preclinical species and humans. Applicability of the model for special populations, such as patients with hepatic impairment, was also demonstrated. The proposed model will be a valuable tool for optimization of exposure profiles of doxorubicin in human patients.
Collapse
Affiliation(s)
- Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, 08854, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, NJ, 07920, USA
| | - Manting Chiang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, 08854, USA.,Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, 08854, USA
| | - Xiaowei Zang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, 08854, USA
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea, 38430
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, 08854, USA.,Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, 08854, USA
| |
Collapse
|
9
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Liang J, Huang Q, Hua C, Hu J, Chen B, Wan J, Hu Z, Wang B. pH‐Responsive Nanoparticles Loaded with Graphene Quantum Dots and Doxorubicin for Intracellular Imaging, Drug Delivery and Efficient Cancer Therapy. ChemistrySelect 2019. [DOI: 10.1002/slct.201803807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junlong Liang
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Qianwei Huang
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Chenxiang Hua
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Jinhua Hu
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Biling Chen
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Junmin Wan
- Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyMinistry of EducationZhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhiwen Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyMinistry of EducationZhejiang Sci-Tech University Hangzhou 310018 China
| | - Bing Wang
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
11
|
Obounchoey P, Tabtimmai L, Suphakun P, Thongkhao K, Eurtivong C, Gleeson MP, Choowongkomon K. In silico identification and in vitro validation of nogalamycin N-oxide (NSC116555) as a potent anticancer compound against non-small-cell lung cancer cells. J Cell Biochem 2018; 120:3353-3361. [PMID: 30324706 DOI: 10.1002/jcb.27605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The epidermal growth factor receptor (EGFR) was found to be overexpressed in several cancers, especially in lung cancers. Finding new effective drug against EGFR is the key to cancer treatment. In this study, the GOLD docking algorithm was used to virtually screen for novel human EGFR inhibitors from the NCI database. Thirty-four hit compounds were tested for EGFR-tyrosine kinase (TK) inhibition. Two potent compounds, 1-amino-4-(4-[4-amino-2-sulfophenyl]anilino)-9,10-dioxoanthracene-2-sulfonic acid (NSC125910), and nogalamycin N-oxide (NSC116555) were identified with IC50 values against EGFR-TK comparable to gefitinib; 16.14 and 37.71 nM, respectively. However, only NSC116555 demonstrated cytotoxic effects against non-small-cell lung cancer, A549, shown in the cell cytotoxicity assay with an IC50 of 0.19 + 0.01 µM, which was more potent than gefitinib. Furthermore, NSC116555 showed cytotoxicity against A549 via apoptosis in a dose-dependent manner.
Collapse
Affiliation(s)
- Phongphat Obounchoey
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Lueacha Tabtimmai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Praphasri Suphakun
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kannika Thongkhao
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Chatchakorn Eurtivong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Matthew Paul Gleeson
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. Int J Pharm 2018; 549:133-149. [DOI: 10.1016/j.ijpharm.2018.07.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
|
13
|
Dubbelboer IR, Sjögren E, Lennernäs H. Porcine and Human In Vivo Simulations for Doxorubicin-Containing Formulations Used in Locoregional Hepatocellular Carcinoma Treatment. AAPS JOURNAL 2018; 20:96. [PMID: 30167825 DOI: 10.1208/s12248-018-0251-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
It is important to be able to simulate and predict formulation effects on the pharmacokinetics of a drug in order to optimize effectivity in clinical practice and drug development. Two formulations containing doxorubicin are used in the treatment of hepatocellular carcinoma (HCC): a Lipiodol-based emulsion (LIPDOX) and a loadable microbead system (DEBDOX). Although equally effective, the formulations are vastly different, and little is known about the parameters affecting doxorubicin release in vivo. However, mathematical modeling can be used to predict doxorubicin release properties from these formulations and its in vivo pharmacokinetic (PK) profiles. A porcine semi-physiologically based pharmacokinetic (PBPK) model was scaled to a human physiologically based biopharmaceutical (PBBP) model that was altered to include HCC. DOX in vitro and in vivo release data from LIPDOX or DEBDOX were collected from the literature and combined with these in silico models. The simulated pharmacokinetic profiles were then compared with observed porcine and human HCC patient data. DOX pharmacokinetic profiles of LIPDOX-treated HCC patients were best predicted from release data sets acquired by in vitro methods that did not use a diffusion barrier. For the DEBDOX group, the best predictions were from the in vitro release method with a low ion concentration and a reduced loading dose. The in silico modeling combined with historical release data was effective in predicting in vivo plasma exposure. This can give useful insights into the release method properties necessary for correct in vivo predictions of pharmacokinetic profiles of HCC patients dosed with LIPDOX or DEBDOX.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
| |
Collapse
|
14
|
He H, Liu C, Wu Y, Zhang X, Fan J, Cao Y. A Multiscale Physiologically-Based Pharmacokinetic Model for Doxorubicin to Explore its Mechanisms of Cytotoxicity and Cardiotoxicity in Human Physiological Contexts. Pharm Res 2018; 35:174. [PMID: 29987398 DOI: 10.1007/s11095-018-2456-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The mechanisms underlying doxorubicin cytotoxicity and cardiotoxicity were broadly explored but remain incompletely understood. A multiscale physiologically-based pharmacokinetic (PBPK) model was developed to assess doxorubicin dispositions at levels of system, tissue interstitial, cell, and cellular organelles. This model was adopted to explore the mechanisms-of-action/toxicity of doxorubicin in humans. METHODS The PBPK model was developed by analyzing data from mice and the model was verified by scaling up to predict doxorubicin multiscale dispositions in rats and humans. The multiscale dispositions of doxorubicin in human heart and tumors were explicitly simulated to elucidate the potential mechanisms of its cytotoxicity and cardiotoxicity. RESULTS The developed PBPK model was able to adequately describe doxorubicin dispositions in mice, rats and humans. In humans, prolonged infusion, a dosing regimen with less cardiotoxicity, was predicted with substantially reduced free doxorubicin concentrations at human heart interstitium, which were lower than the concentrations associated with oxidative stress. However, prolonged infusion did not reduce doxorubicin-DNA adduct at tumor nucleus, consistent with clinical observations that prolonged infusion did not compromise anti-tumor effect, indicating that one primary anti-tumor mechanism was DNA torsion. CONCLUSIONS A multiscale PBPK model for doxorubicin was developed and further applied to explore its cytotoxic and cardiotoxic mechanisms.
Collapse
Affiliation(s)
- Hua He
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Xinyuan Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jianghong Fan
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
15
|
Henze LJ, Koehl NJ, O'Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. ACTA ACUST UNITED AC 2018; 71:581-602. [PMID: 29635685 DOI: 10.1111/jphp.12912] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In pharmaceutical drug development, preclinical tests in animal models are essential to demonstrate whether the new drug is orally bioavailable and to gain a first insight into in vivo pharmacokinetic parameters that can subsequently be used to predict human values. Despite significant advances in the development of bio-predictive in vitro models and increasing ethical expectations for reducing the number of animals used for research purposes, there is still a need for appropriately selected pre-clinical in vivo testing to provide guidance on the decision to progress to testing in humans. The selection of the appropriate animal models is essential both to maximise the learning that can be obtained from such experiments and to avoid unnecessary testing in a range of species. KEY FINDINGS The present review, provides an insight into the suitability of the pig model for predicting oral bioavailability in humans, by comparing the conditions in the GIT. It also contains a comparison between the bioavailability of compounds dosed to both humans and pigs, to provide an insight into the relative correlation and examples on why a lack of correlation may be observed. SUMMARY While there is a general trend towards predicting human bioavailability from pig data, there is considerable variability in the data set, most likely reflecting species specific differences in individual drug metabolism. Nonetheless, the correlation between pigs vs. humans was comparable to that reported for dogs vs. humans. The presented data demonstrate the suitability of the pig as a preclinical model to predict bioavailability in human.
Collapse
Affiliation(s)
- Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Edmund S Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | | |
Collapse
|
16
|
Viel A, Henri J, Bouchène S, Laroche J, Rolland JG, Manceau J, Laurentie M, Couet W, Grégoire N. A Population WB-PBPK Model of Colistin and its Prodrug CMS in Pigs: Focus on the Renal Distribution and Excretion. Pharm Res 2018. [PMID: 29532176 DOI: 10.1007/s11095-018-2379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The objective was the development of a whole-body physiologically-based pharmacokinetic (WB-PBPK) model for colistin, and its prodrug colistimethate sodium (CMS), in pigs to explore their tissue distribution, especially in kidneys. METHODS Plasma and tissue concentrations of CMS and colistin were measured after systemic administrations of different dosing regimens of CMS in pigs. The WB-PBPK model was developed based on these data according to a non-linear mixed effect approach and using NONMEM software. A detailed sub-model was implemented for kidneys to handle the complex disposition of CMS and colistin within this organ. RESULTS The WB-PBPK model well captured the kinetic profiles of CMS and colistin in plasma. In kidneys, an accumulation and slow elimination of colistin were observed and well described by the model. Kidneys seemed to have a major role in the elimination processes, through tubular secretion of CMS and intracellular degradation of colistin. Lastly, to illustrate the usefulness of the PBPK model, an estimation of the withdrawal periods after veterinary use of CMS in pigs was made. CONCLUSIONS The WB-PBPK model gives an insight into the renal distribution and elimination of CMS and colistin in pigs; it may be further developed to explore the colistin induced-nephrotoxicity in humans.
Collapse
Affiliation(s)
- Alexis Viel
- Inserm U1070, Pôle Biologie Santé, Poitiers, France
- Anses, Laboratoire de Fougères, Fougères, France
- Université de Poitiers, UFR Médecine-Pharmacie, Poitiers, France
| | - Jérôme Henri
- Anses, Laboratoire de Fougères, Fougères, France
| | | | - Julian Laroche
- Inserm U1070, Pôle Biologie Santé, Poitiers, France
- CHU Poitiers, Laboratoire de Toxicologie-Pharmacocinétique, Poitiers, France
| | | | | | | | - William Couet
- Inserm U1070, Pôle Biologie Santé, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, Poitiers, France
- CHU Poitiers, Laboratoire de Toxicologie-Pharmacocinétique, Poitiers, France
| | - Nicolas Grégoire
- Inserm U1070, Pôle Biologie Santé, Poitiers, France.
- Université de Poitiers, UFR Médecine-Pharmacie, Poitiers, France.
| |
Collapse
|
17
|
Hanke N, Teifel M, Moj D, Wojtyniak JG, Britz H, Aicher B, Sindermann H, Ammer N, Lehr T. A physiologically based pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin-integration of in vitro results, Phase I and Phase II data and model application for drug-drug interaction potential analysis. Cancer Chemother Pharmacol 2017; 81:291-304. [PMID: 29204687 DOI: 10.1007/s00280-017-3495-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE Zoptarelin doxorubicin is a fusion molecule of the chemotherapeutic doxorubicin and a luteinizing hormone-releasing hormone receptor (LHRHR) agonist, designed for drug targeting to LHRHR positive tumors. The aim of this study was to establish a physiologically based pharmacokinetic (PBPK) parent-metabolite model of zoptarelin doxorubicin and to apply it for drug-drug interaction (DDI) potential analysis. METHODS The PBPK model was built in a two-step procedure. First, a model for doxorubicin was developed, using clinical data of a doxorubicin study arm. Second, a parent-metabolite model for zoptarelin doxorubicin was built, using clinical data of three different zoptarelin doxorubicin studies with a dosing range of 10-267 mg/m2, integrating the established doxorubicin model. DDI parameters determined in vitro were implemented to predict the impact of zoptarelin doxorubicin on possible victim drugs. RESULTS In vitro, zoptarelin doxorubicin inhibits the drug transporters organic anion-transporting polypeptide 1B3 (OATP1B3) and organic cation transporter 2 (OCT2). The model was applied to evaluate the in vivo inhibition of these transporters in a generic manner, predicting worst-case scenario decreases of 0.5% for OATP1B3 and of 2.5% for OCT2 transport rates. Specific DDI simulations using PBPK models of simvastatin (OATP1B3 substrate) and metformin (OCT2 substrate) predict no significant changes of the plasma concentrations of these two victim drugs during co-administration. CONCLUSIONS The first whole-body PBPK model of zoptarelin doxorubicin and its active metabolite doxorubicin has been successfully established. Zoptarelin doxorubicin shows no potential for DDIs via OATP1B3 and OCT2.
Collapse
Affiliation(s)
- Nina Hanke
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany
| | - Michael Teifel
- Aeterna Zentaris GmbH, Weismuellerstr. 50, 60314, Frankfurt, Germany
| | - Daniel Moj
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany
| | - Jan-Georg Wojtyniak
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany
| | - Hannah Britz
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany
| | - Babette Aicher
- Aeterna Zentaris GmbH, Weismuellerstr. 50, 60314, Frankfurt, Germany
| | | | - Nicola Ammer
- Aeterna Zentaris GmbH, Weismuellerstr. 50, 60314, Frankfurt, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany.
| |
Collapse
|