1
|
Cui M, Liu Y, Liu Y, Li T, Chen X, Da L. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas. Biomed Pharmacother 2024; 179:117328. [PMID: 39243435 DOI: 10.1016/j.biopha.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the reproductive system that threaten women's lives and health. The incidence of this disease is on the rise globally. Most cases of endometrial cancer comprise endometrioid adenocarcinomas, whose treatment is challenged by factors such as their high recurrence rate and the need to preserve fertility among young patients. Thus, oral endocrine therapy has become the main treatment modality. The main drugs used in oral endocrine therapy are progestins, selective estrogen receptor antagonists, and aromatase inhibitors. However, their clinical use is hindered by their low solubility and low oral utilization. The rapid development of nanotechnology allows the combination of these drugs with oral nano-formulations to create a good carrier. Such nanocarriers, including nanospheres, nanocapsules, and micelles can protect the drug against clearance and increase the site specificity of drug delivery. This paper reviews the pathogenesis of endometrioid endometrial cancer (EEC) and oral nano-formulations for endocrine therapy.
Collapse
Affiliation(s)
- Minghua Cui
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuehui Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yangyang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tao Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Liu Da
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
3
|
Poka MS, Milne M, Wessels A, Aucamp M. Sugars and Polyols of Natural Origin as Carriers for Solubility and Dissolution Enhancement. Pharmaceutics 2023; 15:2557. [PMID: 38004536 PMCID: PMC10675835 DOI: 10.3390/pharmaceutics15112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Crystalline carriers such as dextrose, sucrose, galactose, mannitol, sorbitol, and isomalt have been reported to increase the solubility, and dissolution rates of poorly soluble drugs when employed as carriers in solid dispersions (SDs). However, synthetic polymers dominate the preparation of drugs: excipient SDs have been created in recent years, but these polymer-based SDs exhibit the major drawback of recrystallisation upon storage. Also, the use of high-molecular-weight polymers with increased chain lengths brings forth problems such as increased viscosity and unnecessary bulkiness in the resulting dosage form. An ideal SD carrier should be hydrophilic, non-hygroscopic, have high hydrogen-bonding propensity, have a high glass transition temperature (Tg), and be safe to use. This review discusses sugars and polyols as suitable carriers for SDs, as they possess several ideal characteristics. Recently, the use of low-molecular-weight excipients has gained much interest in developing SDs. However, there are limited options available for safe, low molecular excipients, which opens the door again for sugars and polyols. The major points of this review focus on the successes and failures of employing sugars and polyols in the preparation of SDs in the past, recent advances, and potential future applications for the solubility enhancement of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Pretoria 0208, South Africa;
| | - Marnus Milne
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Pretoria 0208, South Africa;
| | - Anita Wessels
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Hoffman Street, Potchefstroom 2520, South Africa;
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Drive, Cape Town 7130, South Africa
| |
Collapse
|
4
|
Takeda K, Miyazaki S, Okamoto T, Imanaka H, Ishida N, Imamura K. Water sorption and glass-to-rubber transition of amorphous sugar matrices, vacuum foam- and spray-dried from alcohols. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Chen J, Li H, Li X, Yuan D, Cheng H, Ke Y, Cheng J, Wang Z, Chen J, Li J. Co-amorphous systems using epigallocatechin-3-gallate as a co-former: stability, in vitro dissolution, in vivo bioavailability and underlying molecular mechanisms. Eur J Pharm Biopharm 2022; 178:82-93. [PMID: 35932965 DOI: 10.1016/j.ejpb.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
Co-amorphous strategy has been extensively investigated to improve the dissolution of hydrophobic drugs. Here, epigallocatechin-3-gallate (EGCG) was exploited as a co-former in co-amorphous systems based on its unique structure including phenyl rings, phenolic hydroxyl groups and the galloyl moiety. Two model BCS class II drugs, simvastatin (SIM) and nifedipine (NIF), were selected to be co-amorphized with EGCG. All drug-EGCG systems at three molar ratios became amorphous by the means of spray drying and showed high physically stable either under dry condition and 75% RH at 40 °C or under dry conditions at 25 °C. The optimal feed molar ratios of both EGCG based co-amorphous systems fabricated were determined to be three, under which the significant increases were obtained in the maximum apparent concentrations of 4.90-fold for SIM at 1 h and 106.03-fold for NIF at 0.25 h compared to crystalline drugs by non-sink dissolution studies. The underlying molecular mechanisms of two co-amorphous systems formation were involved in molecular miscibility, hydrogen bonds and π-π stacking interactions unraveled by means of DSC, FTIR and molecular dynamics simulations. More to the point, oral pharmacokinetic studies in rats demonstrated that co-amorphous SIM-EGCG and NIF-EGCG systems at 1:3 have a significant increase in Cmax of 1.81- and 5.69-fold, and AUC 0-24 h of 1.62- and 4.57-fold compared with those of corresponding crystalline drugs, respectively. In conclusion, EGCG is proved to be a promising co-former in co-amorphous systems.
Collapse
Affiliation(s)
- Jinfeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Huaning Li
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Xiangwei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Yixin Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, PR China
| | - Zengwu Wang
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China.
| |
Collapse
|
6
|
Formulation and In Vitro Characterization of a Vacuum-Dried Drug–Polymer Thin Film for Intranasal Application. Polymers (Basel) 2022; 14:polym14142954. [PMID: 35890730 PMCID: PMC9320708 DOI: 10.3390/polym14142954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Intranasal drug applications show significant therapeutic potential for diverse pharmaceutical modalities. Because the formulation applied to the nasal cavity is discharged to the pharyngeal side by mucociliary clearance, the formulation should be dissolved effectively in a limited amount of mucus within its retention time in the nasal cavity. In this study, to develop novel formulations with improved dissolution behavior and compatibility with the intranasal environment, a thin-film formulation including drug and polymer was prepared using a vacuum-drying method. The poorly water-soluble drugs ketoprofen, flurbiprofen, ibuprofen, and loxoprofen were dissolved in a solvent comprising water and methanol, and evaporated to obtain a thin film. Physical analyses using differential scanning calorimetry (DSC), powder X-ray diffraction analysis (PXRD), and scanning electron microscopy SEM revealed that the formulations were amorphized in the film. The dissolution behavior of the drugs was investigated using an in vitro evaluation system that mimicked the intranasal physiological environment. The amorphization of drugs formulated with polymers into thin films using the vacuum-drying method improved the dissolution rate in artificial nasal fluid. Therefore, the thin film developed in this study can be safely and effectively used for intranasal drug application.
Collapse
|
7
|
Comparison of improvements of aqueous dissolution of structurally analogous hydrophobic drugs by amorphous solid dispersion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Tahir U, Hussam A, Roy P, Hashmi I. Noncovalent Association and Partitioning of Some Perfume Components at Infinite Dilution with Myelin Basic Protein Pseudophase in Normal Saline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4793-4801. [PMID: 33851853 DOI: 10.1021/acs.langmuir.0c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myelin basic protein (MBP), one of the major protein constituents of the myelin sheath, possesses unique ligand-binding features. We present a novel equilibrium headspace gas chromatographic technique to examine the thermodynamics of noncovalent interactions between common perfume components: Lilial, Hedione, Hexylcinnamic aldehyde, and Versalide with MBP monomers and its hexameric MBP-pseudophase. A general theoretical model is used to calculate the critical aggregation concentration (cac) of MBP, perfume component binding constants with monomeric MBP, K11, and MBP as pseudophase, Kn1, and free energies for perfume component binding with monomeric MBP, ΔGb,11, and MBP as pseudophase, ΔGb,n1. In addition, the pseudophase-water partition coefficients, Kx, the free energies of transfer of perfume from bulk water to the MBP-pseudophase, ΔGt, and the intra-aggregate activity coefficients, γm∞, at infinite dilution were also determined. The cac value measured by the method of fractional distribution is a unique and precise approach in understanding the aggregation phenomenon. Within the experimental error, the 1:1 binding free energies did not differ by more than 1 kJ/mol among the perfume components but favored the MBP pseudophase binding by 6 kJ/mol. Therefore, that protein aggregation can enhance the binding of small molecules is probably a general conclusion. While the magnitudes of K11, Kn1, ΔGb, Kx, and ΔGt show weak trends, the γm∞ values show a strong and distinct trend in interaction, spanning 4 orders of magnitude among the perfume components.
Collapse
Affiliation(s)
| | | | | | - Irina Hashmi
- Department of Information Science and Technology, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
9
|
Han J, Tong M, Li S, Yu X, Hu Z, Zhang Q, Xu R, Wang J. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: a case of quercetin. Drug Dev Ind Pharm 2021; 47:153-162. [PMID: 33295808 DOI: 10.1080/03639045.2020.1862173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At present, saccharides as hydrophilic matrixes, have been gradually used in amorphous solid dispersions (ASD) for dispersing poorly water-soluble drugs without surfactants. In this study, an amorphous chitosan oligosaccharide (COS) was applied as a water-soluble matrix to form surfactant-free ASD via the ball milling to vitrify quercetin (QUE) and enhance the dissolution and bioavailability. Solid-state characterization (DSC, XRPD, FTIR, SEM and PLM) and physical stability assessments verified that the prepared ASDs showed excellent physical stability with complete amorphization due to potential interactions between QUE and COS. In vitro sink dissolution tests suggested all QUE-COS ASDs (w:w, 1:1, 1:2 and 1:4) significantly enhanced the dissolution rate of QUE. Meanwhile, in vitro non-sink dissolution exhibited that the maximum supersaturated concentration ranged from 112.62 to 138.00 µg/mL for all QUE-COS ASDs, which was much higher than that of pure QUE. Besides, the supersaturation of QUE-COS ASD kept for at least 24 h. In rat pharmacokinetics, the oral bioavailability of QUE-COS ASDs showed 1.64 ∼ 2.25 times increase compared to the pure QUE (p < .01). Hence, the present study confirms the amorphous COS could be applied as a promising hydrophilic matrix in QUE-COS ASDs for enhancing dissolution performance and bioavailability of QUE.
Collapse
Affiliation(s)
- Jiawei Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shukun Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangyu Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqi Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Quan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Runze Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
11
|
Huang Y, Kuminek G, Roy L, Cavanagh KL, Yin Q, Rodríguez-Hornedo N. Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and Precipitation. Mol Pharm 2019; 16:3887-3895. [PMID: 31318567 PMCID: PMC10625315 DOI: 10.1021/acs.molpharmaceut.9b00501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocrystals are often more soluble than needed and pose unnecessary risks for precipitation of less soluble forms of the drug during processing and dissolution. Such conversions lead to erratic cocrystal behavior and nullify the cocrystal solubility advantage over parent drug (SA = Scocrystal/Sdrug). This work demonstrates a quantitative method for additive selection to control cocrystal disproportionation based on cocrystal solubility advantage (SA) diagrams. The tunability of cocrystal SA is dependent on the selective drug-solubilizing power of surfactants (SPdrug = (ST/Saq)drug). This cocrystal property is used to generate SA-SP diagrams that facilitate surfactant selection and provide a framework for evaluating how SA influences drug concentration-time profiles associated with cocrystal dissolution, drug supersaturation, and precipitation (DSP). Experimental results with indomethacin-saccharin cocrystal and surfactants (sodium lauryl sulfate, Brij, and Myrj) demonstrate the log-linear relationship characteristic of SA-SP diagrams and the dependence of σmax and dissolution area under the curve (AUC) on SA with characteristic maxima at a threshold supersaturation where drug nucleation occurs. This approach is expected to streamline cocrystal formulation as it facilitates additive selection by considering the interplay between thermodynamic (SA) and kinetic (DSP) processes.
Collapse
Affiliation(s)
- Yaohui Huang
- School of Chemical Engineering and Technology, Key Laboratory for Modern Drug Delivery and High Efficiency , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Gislaine Kuminek
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109-1065 , United States
| | - Lilly Roy
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109-1065 , United States
| | - Katie L Cavanagh
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109-1065 , United States
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, Key Laboratory for Modern Drug Delivery and High Efficiency , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109-1065 , United States
| |
Collapse
|
12
|
Physical Stability of an Amorphous Sugar Matrix Dried From Methanol as an Amorphous Solid Dispersion Carrier and the Influence of Heat Treatment. J Pharm Sci 2019; 108:2056-2062. [DOI: 10.1016/j.xphs.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/21/2022]
|
13
|
Huang R, Han J, Wang R, Zhao X, Qiao H, Chen L, Li W, Di L, Zhang W, Li J. Surfactant-free solid dispersion of BCS class IV drug in an amorphous chitosan oligosaccharide matrix for concomitant dissolution in vitro - permeability increase. Eur J Pharm Sci 2019; 130:147-155. [PMID: 30699368 DOI: 10.1016/j.ejps.2019.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Saccharides have been applied as a water-soluble matrix for dispersing hydrophobic drugs homogeneously without the need to use surfactants in amorphous solid dispersions (ASD). Up to now, concomitant permeability improvement of BCS Class IV drug by such matrices have not been much appreciated. Herein, an amorphous chitosan oligosaccharide (COS) was used as matrix to prepare surfactant-free ASD of BCS class IV drug by the ball milling method, with curcumin (CUR) as a model drug. The DSC, XRPD, FTIR and physical stability experiments indicated that CUR was in an amorphous state with high physical stability and exhibited potential interactions with COS in the ASD. Non-sink dissolution in vitro studies showed the maximum dissolution concentration of all CUR-COS ASD (CUR and COS at weight ratios of 1:1, 1:2 and 1:4) reached ranging from 97.85 to 101.21 μg/mL, far above that of pure CUR. The supersaturated concentration remained for at least 24 h under non-sink condition. Caco-2 cell model revealed that, compared to the pure CUR group, the apparent permeability coefficients were increased by 1.72-4.44-fold in all three CUR-COS ASD, which was mainly attributed to opening the tight junctions of Caco-2 cells by COS. The pharmacokinetic study showed that all CUR-COS ASD groups exhibited significant enhancements in AUC0-∞, with 1.55-3.01-fold that of pure CUR (p < 0.01). Tmax of CUR was shortened after oral administration of all three ASD. The current study demonstrates the amorphous COS could be used as a promising matrix in ASD for enhancing the oral bioavailability of BCS class IV drug by improving dissolution behavior and membrane permeability.
Collapse
Affiliation(s)
- Rong Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Jiawei Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Xiaoli Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Lihua Chen
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wen Li
- Department of Pharmacy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| |
Collapse
|
14
|
Yan M, Wang N, Zhong B, Cheng X, Wang H, Chen H. A general approach for encapsulating organic crystals in a polyaniline shell. NANOSCALE 2018; 10:21001-21005. [PMID: 30411102 DOI: 10.1039/c8nr07284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hydrophobicity and instability of organic crystals restrict their further applications. Here, we present a general and scalable method to encapsulate different organic crystals in a conductive polyaniline (PANI) shell. The shell significantly improves the stability and dispersity of the nanocrystals, without compromising their luminescence intensity.
Collapse
Affiliation(s)
- Miao Yan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | | | | | |
Collapse
|
15
|
Laitinen R, Löbmann K, Grohganz H, Priemel P, Strachan CJ, Rades T. Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. Int J Pharm 2017; 532:1-12. [DOI: 10.1016/j.ijpharm.2017.08.123] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
|