1
|
Wang Y, Wang X, Zhang J, Zhang X, Cheng Y, Jiang F. A Novel Melanin-Targeted 18F-PFPN Positron Emission Tomography Imaging for Diagnosing Ocular and Orbital Melanoma. Korean J Radiol 2024; 25:742-748. [PMID: 39028010 PMCID: PMC11306006 DOI: 10.3348/kjr.2024.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE 18F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy) picolinamide (18F-PFPN) is a novel positron emission tomography (PET) probe designed to specifically targets melanin. This study aimed to evaluate the diagnostic feasibility of 18F-PFPN in patients with ocular or orbital melanoma. MATERIALS AND METHODS Three patients with pathologically confirmed ocular or orbital melanoma (one male, two females; age 41-59 years) were retrospectively reviewed. Each patient underwent comprehensive 18F-PFPN and 18F-fluorodeoxyglucose (18F-FDG) PET scans. The maximum standardized uptake value (SUVmax) of the lesion and the interference caused by background tissue were compared between 18F-PFPN and 18F-FDG PET imaging. In addition, the effect of intrinsic pigments in the uvea and retina on the interpretation of the results was examined. The contralateral non-tumorous eye of each patient served as a control. RESULTS All primary tumors (3/3) were detected using 18F-PFPN PET, while only two primary tumors were detected using 18F-FDG PET. Within each lesion, the SUVmax of 18F-PFPN was 2.6 to 8.3 times higher than that of 18F-FDG. Regarding the quality of PET imaging, the physiological uptake of 18F-FDG PET in the brain and periocular tissues limited the imaging of tumors. However, 18F-PFPN PET minimized this interference. Notably, intrinsic pigments in the uvea and retina did not cause abnormal concentrations of 18F-PFPN, as no anomalous uptake of 18F-PFPN was detected in the healthy contralateral eyes. CONCLUSION Compared to 18F-FDG, 18F-PFPN demonstrated higher detection rates for ocular and orbital melanomas with minimal interference from surrounding tissues. This suggests that 18F-PFPN could be a promising clinical diagnostic tool for distinguishing malignant melanoma from benign pigmentation in ocular and orbital melanomas.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Cheng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
3
|
Zhang X, Lin Z, Li M, Gai Y, Zheng H, Fan L, Ruan W, Hu F, Chen J, Lan X. Melanin-targeted [ 18F]-PFPN PET imaging for prognosticating patients with melanoma. Eur J Nucl Med Mol Imaging 2023; 50:3062-3071. [PMID: 37191681 DOI: 10.1007/s00259-023-06258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE Positron emission tomography (PET) using [18F]-PFPN, a melanin-targeted imaging tracer, has excellent diagnostic performance in patients with melanoma. This study aimed to investigate its value in prognostication and determine predictors of progression-free survival (PFS) and overall survival (OS). METHODS We reviewed melanoma patients who underwent [18F]-PFPN and [18F]-FDG PET from February 2021 to July 2022. Clinical characteristics, follow-up data, and the following [18F]-PFPN PET parameters were recorded: maximum standardized uptake value (SUVmax), whole-body melanotic tumoral volume (WBMTV), and whole-body total lesion melanin (WBTLM). Receiver operating characteristic (ROC), Kaplan-Meier and Cox regression analyses were performed. RESULTS Seventy-six patients (47 men and 29 women; mean age, 57.99 ± 10.72 years) were included for analysis. Median follow-up was 12.0 months (range: 1-22 months). Eighteen patients died and 38 experienced progression. Median OS was 17.60 months (95% confidence interval, 15.89-19.31). In the ROC analysis, [18F]-PFPN PET parameters were superior to those of [18F]-FDG PET in prognosticating death and disease progression. PFS and OS were significantly better in patients with lower SUVmax, WBMTV, and WBTLM on [18F]-PFPN PET (log-rank, P < 0.05). In the univariate analyses, distant metastasis, SUVmax, WBMTV, and WBTLM were significantly associated with cumulative incidence of PFS and OS (P < 0.05). In the multivariate analysis, SUVmax was an independent predictor of PFS and OS. CONCLUSIONS [18F]-PFPN PET has a role in prognostication of melanoma patients. Patients with higher [18F]-PFPN SUVmax have worse prognosis. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT05645484. Registered 9 December, 2022, https://clinicaltrials.gov/ct2/show/NCT05645484?cond=The+Prognostic+Value+of+18F-PFPN+PET+Imaging+in+Patients+With+Malignant+Melanoma&draw=2&rank=1.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Huaiyuan Zheng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Li Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
4
|
Zhang X, Li M, Gai Y, Chen J, Tao J, Yang L, Hu F, Song W, Yen TC, Lan X. 18F-PFPN PET: A New and Attractive Imaging Modality for Patients with Malignant Melanoma. J Nucl Med 2022; 63:1537-1543. [PMID: 35115367 PMCID: PMC9536710 DOI: 10.2967/jnumed.121.263179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
18F-FDG PET has limited diagnostic applications in malignant melanoma (MM). 18F-N-(2-(diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)picolinamide (18F-PFPN) is a novel PET probe with high affinity and selectivity for melanin. We conducted a clinical study with 2 aims, first to investigate the biodistribution and radiation dosimetry of 18F-PFPN in healthy volunteers, and second, to examine the diagnostic utility of 18F-PFPN PET imaging in patients with MM. Methods: 18F-PFPN was synthesized through a fluoro-for-tosyl exchange reaction. Five healthy volunteers were enrolled to investigate the biodistribution, pharmacokinetics, radiation dosimetry, and safety of the tracer. Subsequently, a total of 21 patients with clinically suspected or confirmed MM underwent both 18F-PFPN PET/MRI and 18F-FDG PET/CT scans. The normalized SUVmax of selected lesions was determined for both tracers and compared in patient- and lesion-based analyses. Results: 18F-PFPN has an elevated radiochemical yield and was highly stable in vivo. In healthy volunteers, 18F-PFPN was safe and well tolerated, and its effective absorbed dose was comparable to that of 18F-FDG. In patient-based analysis, 18F-PFPN uptake was higher than 18F-FDG for both primary tumors and nodal metastases. In lesion-based analysis,18F-PFPN PET imaging could detect 365 metastases that were missed on 18F-FDG PET. Additionally, 18F-PFPN PET imaging had clinical value in distinguishing false-positive lesions on 18F-FDG PET. Conclusion: 18F-PFPN is a safe and well-tolerated melanin PET tracer. In a pilot clinical study, 18F-PFPN PET imaging outperformed traditional 18F-FDG PET in identifying both primary MM and its distant spread.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tzu-Chen Yen
- Department of Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan; and
- Aprinoia Therapeutics Co., Ltd., Suzhou, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
5
|
Zhang X, Li M, Hu F, Lan X. Melanin-Targeted PET Imaging Sheds Light on Pigment Epithelioma in Corpus Ciliare. Clin Nucl Med 2022; 47:839-840. [PMID: 35930712 DOI: 10.1097/rlu.0000000000004268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT A 57-year-old woman had gradually decreased visual acuity in the left eye, accompanied by distension and pain. MRI demonstrated a small neoplasm in corpus ciliare, which promoted PET imaging for further assessment. 18F-FDG PET imaging found no obvious uptake in the lesion. However, melanin-targeted PET imaging demonstrated the lesion with avid 18F-PFPN (18F-N-(2-diethylaminoethyl)-4-(2-[2-ethoxy]-ethoxy)pyridine) accumulation (SUVmax, 7.1), which suggested it with melanin expression. Pigmented epithelial adenoma was further confirmed by pathology. Our case illustrated that pigmented epithelial adenoma is characterized by avid 18F-PFPN accumulations and can be detected even in a hidden location with a size of ≤5 mm.
Collapse
|
6
|
Solnik M, Paduszyńska N, Czarnecka AM, Synoradzki KJ, Yousef YA, Chorągiewicz T, Rejdak R, Toro MD, Zweifel S, Dyndor K, Fiedorowicz M. Imaging of Uveal Melanoma—Current Standard and Methods in Development. Cancers (Basel) 2022; 14:cancers14133147. [PMID: 35804919 PMCID: PMC9265106 DOI: 10.3390/cancers14133147] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Uveal melanoma is the most prevalent intraocular tumor in adults, derived from melanocytes; the liver is the most common site of its metastases. Due to troublesome tumor localization, different imaging techniques are utilized in diagnostics, i.e., fundus imaging (FI), ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), or fundus autofluorescence (FAF). Specialists eagerly use these techniques, but sometimes the precision and quality of the obtained images are imperfect, raising diagnostic doubts and prompting the search for new ones. In addition to analyzing the currently utilized methods, this review also introduces experimental techniques that may be adapted to clinical practice in the future. Moreover, we raise the topic and present a perspective for personalized medicine in uveal melanoma treatment. Abstract Uveal melanoma is the most common primary intraocular malignancy in adults, characterized by an insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, a biopsy followed by a pathological exam is used only in certain cases. Therefore, an early and noninvasive diagnosis is essential to enhance patients’ chances for early treatment. We reviewed imaging modalities currently used in the diagnostics of uveal melanoma, including fundus imaging, ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF), as well as positron emission tomography/computed tomography (PET/CT) or magnetic resonance imaging (MRI). The principle of imaging techniques is briefly explained, along with their role in the diagnostic process and a summary of their advantages and limitations. Further, the experimental data and the advancements in imaging modalities are explained. We describe UM imaging innovations, show their current usage and development, and explain the possibilities of utilizing such modalities to diagnose uveal melanoma in the future.
Collapse
Affiliation(s)
- Małgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.S.); (N.P.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.S.); (N.P.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland;
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Kamil J. Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
- Correspondence:
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Tomasz Chorągiewicz
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (T.C.); (R.R.); (M.D.T.)
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (T.C.); (R.R.); (M.D.T.)
| | - Mario Damiano Toro
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (T.C.); (R.R.); (M.D.T.)
- Eye Clinic, Public Health Department, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Sandrine Zweifel
- Department of Ophthalmology, University of Zurich, 8091 Zurich, Switzerland;
| | - Katarzyna Dyndor
- Department of Radiography, Medical University of Lublin, 8 Jaczewskiego Str., 20-090 Lublin, Poland;
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| |
Collapse
|
7
|
Bellavia MC, Nyiranshuti L, Latoche JD, Ho KV, Fecek RJ, Taylor JL, Day KE, Nigam S, Pun M, Gallazzi F, Edinger RS, Storkus WJ, Patel RB, Anderson CJ. PET Imaging of VLA-4 in a New BRAF V600E Mouse Model of Melanoma. Mol Imaging Biol 2022; 24:425-433. [PMID: 34694528 PMCID: PMC9183947 DOI: 10.1007/s11307-021-01666-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Despite unprecedented responses to immune checkpoint inhibitors and targeted therapy in melanoma, a major subset of patients progresses and have few effective salvage options. We have previously demonstrated robust, selective uptake of the peptidomimetic LLP2A labeled with Cu-64 ([64Cu]-LLP2A) for positron emission tomography (PET) imaging in subcutaneous and metastatic models of B16F10 murine melanoma. LLP2A binds with high affinity to very late antigen-4 (VLA-4, integrin α4β1), a transmembrane protein overexpressed in melanoma and other cancers that facilitates tumor growth and metastasis. Yet B16F10 fails to faithfully reflect human melanoma biology, as it lacks certain oncogenic driver mutations, including BRAF mutations found in ≥ 50 % of clinical specimens. Here, we evaluated the PET tracer [64Cu]-CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A) in novel, translational BRAFV600E mutant melanoma models differing in VLA-4 expression-BPR (VLA-4-) and BPRα (VLA-4+). PROCEDURES BPR cells were transduced with α4 (CD49d) to overexpress intact cell surface VLA-4 (BPRα). The binding affinity of [64Cu]-LLP2A to BPR and BPRα cells was determined by saturation binding assays. [64Cu]-LLP2A internalization into B16F10, BPR, and BPRα cells was quantified via a plate-based assay. Tracer biodistribution and PET/CT imaging were evaluated in mice bearing subcutaneous BPR and BPRα tumors. RESULTS [64Cu]-LLP2A demonstrated high binding affinity to BPRα (Kd = 1.4 nM) but indeterminate binding to BPR cells. VLA-4+ BPRα and B16F10 displayed comparable time-dependent [64Cu]-LLP2A internalization, whereas BPR internalization was undetectable. PET/CT showed increased tracer uptake in BPRα tumors vs. BPR tumors in vivo, which was validated by significantly greater (p < 0.0001) BPRα tumor uptake in biodistribution analyses. CONCLUSIONS [64Cu]-LLP2A discriminates BPRα (VLA-4+) vs. BPR (VLA-4-) melanomas in vivo, supporting translation of these BRAF-mutated melanoma models via prospective imaging and theranostic studies. These results extend the utility of LLP2A to selectively target clinically relevant and therapy-resistant tumor variants toward its use for therapeutic patient care.
Collapse
Affiliation(s)
- Michael C Bellavia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lea Nyiranshuti
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- RayzeBio Inc., San Diego, CA, 92121, USA
| | - Joseph D Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Khanh-Van Ho
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ronald J Fecek
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Microbiology and Immunology, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, 15601, USA
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kathryn E Day
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shubhanchi Nigam
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Eurofins Scientific, Philadelphia, PA, 19355, USA
| | - Michael Pun
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Fabio Gallazzi
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Robert S Edinger
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Walter J Storkus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ravi B Patel
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Carolyn J Anderson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
8
|
Abstract
ABSTRACT A 47-year-old man, who had a history of occipital skin dissection for melanoma, underwent 18F-FDG and 18F-PFPN (a specific tracer targeting melanin) PET due to increased stomach discomfort and melena. In 18F-FDG and 18F-PFPN images, strong uptakes were both found in the thickened gastric wall, which was suspected as metastatic melanoma to the stomach. This was further confirmed by pathological biopsy of gastric tissue. Our case illustrated that melanin-targeted PET imaging could provide an effective method for searching the metastases of melanoma.
Collapse
|
9
|
Hu F, Gong C, Gai Y, Jiang D, Liu Q, Wang S, Hu M, Pi R, Shu H, Hu J, Lan X. [ 18F]F-ET-OTSSP167 Targets Maternal Embryo Leucine Zipper Kinase for PET Imaging of Triple-Negative Breast Cancer. Mol Pharm 2021; 18:3544-3552. [PMID: 34482695 DOI: 10.1021/acs.molpharmaceut.1c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal embryo leucine zipper kinase (MELK) is a serine/threonine kinase and is highly expressed in triple-negative breast cancer (TNBC). This study aimed to develop a 18F-radiolabeled tracer based on the structure of a small-molecule MELK inhibitor OTSSP167 and evaluate its application for PET imaging of MELK expression in TNBC. OTSSP167 was modified with ethylene glycol to adjust its pharmacokinetics and was then radiolabeled with 18F to obtain [18F]F-ET-OTSSP167 at a labeling yield of 7.14 ± 2.19% and a molar activity of 16.23 ± 1.13 MBq/nmol. In vitro binding assays showed differentiated binding affinities of [18F]F-ET-OTSSP167 in different breast cancer cell lines, with high uptake in MDA-MB-231 (mild MELK expression) and low uptake in MCF-7 (negative MELK expression). PET imaging revealed that MDA-MB-231 tumors could be clearly delineated in vivo, while low tracer uptake was observed in MCF-7 tumors. These findings were confirmed by ex vivo biodistribution studies and were consistent with the immunohistochemistry and tissue staining results. Tracer accumulation in MDA-MB-231 tumors was significantly inhibited by excess amounts of OTSSP167, indicating high specificity of the tracer. In summary, [18F]F-ET-OTSSP167, an easily-prepared probe, can be used to visualize MELK positive tumors, demonstrating its promising clinical potential in selecting patients for MELK inhibitor therapy.
Collapse
Affiliation(s)
- Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chengpeng Gong
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengmeng Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Rundong Pi
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hua Shu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
10
|
A Radiobrominated Tyrosine Kinase Inhibitor for EGFR with L858R/T790M Mutations in Lung Carcinoma. Pharmaceuticals (Basel) 2021; 14:ph14030256. [PMID: 33809064 PMCID: PMC7998589 DOI: 10.3390/ph14030256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Activating double mutations L858R/T790M in the epidermal growth factor receptor (EGFR) region are often observed as the cause of resistance to tyrosine kinase inhibitors (TKIs). Third-generation EGFR-TKIs, such as osimertinib and rociletinib (CO-1686), was developed to target such resistance mutations. The detection of activating L858R/T790M mutations is necessary to select sensitive patients for therapy. Hence, we aimed to develop novel radiobromine-labeled CO-1686 as a positron emission tomography (PET) imaging probe for detecting EGFR L858R/T790M mutations. Nonradioactive brominated-CO1686 (BrCO1686) was synthesized by the condensation of N-(3-[{2-chloro-5-(trifluoromethyl)pyrimidin-4-yl}amino]-5-bromophenyl) acrylamide with the corresponding substituted 1-(4-[4-amino-3-methoxyphenyl]piperazine-1-yl)ethan-1-one. The radiobrominated [77Br]BrCO1686 was prepared through bromodestannylation of the corresponding tributylstannylated precursor with [77Br]bromide and N-chlorosuccinimide. Although we aimed to provide a novel PET imaging probe, 77Br was used as an alternative radionuclide for 76Br. We fundamentally evaluated the potency of [77Br]BrCO1686 as a molecular probe for detecting EGFR L858R/T790M using human non-small-cell lung cancer (NSCLC) cell lines: H1975 (EGFR L858R/T790M), H3255 (EGFR L858R), and H441 (wild-type EGFR). The BrCO1686 showed high cytotoxicity toward H1975 (IC50 0.18 ± 0.06 µM) comparable to that of CO-1686 (IC50 0.14 ± 0.05 µM). In cell uptake experiments, the level of accumulation of [77Br]BrCO1686 in H1975 was significantly higher than those in H3255 and H441 upon 4 h of incubation. The radioactivity of [77Br]BrCO1686 (136.3% dose/mg protein) was significantly reduced to 56.9% dose/mg protein by the pretreatment with an excess CO-1686. These results indicate that the binding site of the radiotracers should be identical to that of CO-1686. The in vivo accumulation of radioactivity of [77Br]BrCO1686 in H1975 tumor (4.51 ± 0.17) was higher than that in H441 tumor (3.71 ± 0.13) 1 h postinjection. Our results suggested that [77Br]BrCO1686 has specificity toward NSCLC cells with double mutations EGFR L858R/T790M compared to those in EGFR L858R and wild-type EGFR. However, the in vivo accumulation of radioactivity in the targeted tumor needs to be optimized by structural modification.
Collapse
|
11
|
Tang R, Gai Y, Li K, Hu F, Gong C, Wang S, Feng F, Altine B, Hu J, Lan X. A novel carbon-11 radiolabeled maternal embryonic leucine zipper kinase inhibitor for PET imaging of triple-negative breast cancer. Bioorg Chem 2021; 107:104609. [PMID: 33454507 DOI: 10.1016/j.bioorg.2020.104609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK) plays an important role in the regulation of tumor cell growth. It is abundant in triple-negative breast cancers (TNBC), making it a promising target for molecular imaging and therapy. Based on the structure of a potent MELK inhibitor (OTSSP167) with high affinity, we developed a novel carbon-11 radiolabeled molecular probe 11C-methoxy-OTSSP167, and evaluated its application in positron emission tomography (PET) imaging of TNBC. 11C-methoxy-OTSSP167 was successfully synthesized and was identical to its non-radiolabeled compound methoxy-OTSSP167 in high-pressure liquid chromatography (HPLC) chromatogram. The obtained tracer had 10 ± 2% radiolabeling yield with a total synthesis time of 40 min. The radiochemical purity of the tracer was more than 95%. The maximum uptake (9.97 ± 0.70%) of 11C-methoxy-OTSSP167 in MELK-overexpressing MDA-MB-231 cells was at 60 min in vitro. On PET, MDA-MB-231 tumors were clearly visible at 30, 60, and 90 min after injection of 11C-methoxy-OTSSP167, while no obvious radioactivity accumulation was found in the low-MELK MCF-7 tumors. In vivo biodistribution data were consistent with the findings of the PET images. However, the radioactive tracer showed high uptake in normal organs such as liver and intestine, which may limit the application of the tracer. In addition, a markedly different MELK expression level in MDA-MBA-231 and MCF-7 tumors was verified via IHC staining. In conclusion, 11C-methoxy-OTSSP167 was successfully developed and exhibited elevated uptake in MELK overexpressed tumor, indicating its potential for noninvasively imaging of MELK overexpressed TNBC.
Collapse
Affiliation(s)
- Rongmei Tang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chengpeng Gong
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fei Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Bouhari Altine
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
12
|
Fawwaz M, Mishiro K, Nishii R, Sawazaki I, Shiba K, Kinuya S, Ogawa K. Synthesis and Fundamental Evaluation of Radioiodinated Rociletinib (CO-1686) as a Probe to Lung Cancer with L858R/T790M Mutations of Epidermal Growth Factor Receptor (EGFR). Molecules 2020; 25:E2914. [PMID: 32599930 PMCID: PMC7356761 DOI: 10.3390/molecules25122914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Rociletinib (CO-1686), a 2,4-diaminopyrimidine derivative, is a highly potent tyrosine kinase inhibitor (TKI) that acts on epidermal growth factor receptor (EGFR) with L858R/T790M mutations. We supposed radioiodinated CO-1686 would function as a useful tool for monitoring EGFR L858R/T790M mutations. To aid in patient selection before therapy with EGFR-TKIs, this study aimed to develop a 125I-labeled derivative of CO-1686, N-{3-[(2-{[4-(4-acetylpiperazin-1-yl)-2-methoxyphenyl]amino}-5-(trifluoromethyl)pyrimidine-4-yl] amino}-5-([125I]iodophenyl)acrylamide ([125I]ICO1686) and evaluate its selectivity toward EGFR L858R/T790M. Radiosynthesis was performed by iododestannylation of the corresponding tributylstannyl precursor with [125I]NaI and N-chlorosuccinimide. The selectivity of the tracer for detecting EGFR L858R/T790M was evaluated using three relevant non-small cell lung cancer (NSCLC) cell lines-H1975, H3255 and H441 overexpressing the dual mutation EGFR L858R/T790M, active mutant EGFR L858R and wild-type EGFR, respectively. The nonradioactive ICO1686 and the precursor compound were successfully synthesized. A novel radiolabeled probe, [125I]ICO1686, was prepared with high radiochemical yield (77%) and purity (>99%). ICO1686 exhibited high cytotoxicity toward H1975 (IC50 0.20 ± 0.05 μM) and H3255 (IC50 0.50 ± 0.21 μM), which is comparable to that of CO-1686. In contrast, the cytotoxicity of ICO1686 toward H441 was 10-fold lower than that toward H1975. In the cell uptake study, the radioactivity uptake of [125I]ICO1686 in H1975 was 101.52% dose/mg, whereas the uptakes in H3255 and H441 were 33.52 and 8.95% dose/mg, respectively. The uptake of [125I]ICO1686 in H1975 was greatly reduced to 45.61% dose/mg protein by treatment with excess CO-1686. In vivo biodistribution study of the radiotracer found that its accumulation in H1975 tumor (1.77 ± 0.43% ID/g) was comparable to that in H3255 tumor (1.63 ± 0.23% ID/g) and the accumulation in H1975 tumor was not reduced by pretreatment with an excess dose of CO-1686. Although this radiotracer exhibited highly specific in vitro uptake in target cancer cells, structural modification is required to improve in vivo biodistribution.
Collapse
Affiliation(s)
- Muammar Fawwaz
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (M.F.); (I.S.); (S.K.)
- Faculty of Pharmacy, Universitas Muslim Indonesia, Urip Sumoharjo KM. 10, Makassar 90-231, Indonesia
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan;
| | - Ryuichi Nishii
- National Institute of Radiological Sciences (NIRST), QST, Inage-ku, Chiba 263-8555, Japan;
| | - Izumi Sawazaki
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (M.F.); (I.S.); (S.K.)
| | - Kazuhiro Shiba
- Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan;
| | - Seigo Kinuya
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (M.F.); (I.S.); (S.K.)
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (M.F.); (I.S.); (S.K.)
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan;
| |
Collapse
|
13
|
Gai Y, Yuan L, Sun L, Li H, Li M, Fang H, Altine B, Liu Q, Zhang Y, Zeng D, Lan X. Comparison of Al 18F- and 68Ga-labeled NOTA-PEG 4-LLP2A for PET imaging of very late antigen-4 in melanoma. J Biol Inorg Chem 2020; 25:99-108. [PMID: 31745667 PMCID: PMC7067668 DOI: 10.1007/s00775-019-01742-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Malignant melanoma is an aggressive cancer with poor prognosis. Very late antigen-4 (VLA-4) is overexpressed in melanoma and many other tumors, making it an attractive target for developing molecular diagnostic and therapeutic agents. We compared Al18F- and 68Ga-labeled LLP2A peptides for PET imaging of VLA-4 expression in melanoma. The peptidomimetic ligand LLP2A was modified with chelator 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA), and the resulting NOTA-PEG4-LLP2A peptide was then radiolabeled with Al18F or 68Ga. The two labeled peptides were assayed for in vitro and in vivo VLA-4 targeting efficiency. Good Al18F and 68Ga radiolabeling yields were achieved, and the resulting PET tracers showed good serum stability. In the in vivo evaluation of the B16F10 xenograft mouse model, both tracers exhibited high accumulation with good contrast in static PET images. Compared with 68Ga-NOTA-PEG4-LLP2A, Al18F-NOTA-PEG4-LLP2A resulted in relatively higher background, including higher liver uptake (1 h: 20.1 ± 2.6 vs. 15.3 ± 1.7%ID/g, P < 0.05; 2 h: 11.0 ± 1.2 vs. 8.0 ± 0.8%ID/g, P < 0.05) and lower tumor-to-blood ratios (2.5 ± 0.4 vs. 3.3 ± 0.5 at 1 h, P < 0.05; 5.1 ± 0.9 vs. 7.3 ± 0.6 at 2 h, P < 0.01) at some time points. The results obtained from the mice blocked with unlabeled peptides and VLA-4-negative A375 xenografts groups confirmed the high specificity of the developed tracers. Despite the relatively high liver uptake, both Al18F-NOTA-PEG4-LLP2A and 68Ga-NOTA-PEG4-LLP2A exhibited high VLA-4 targeting efficacy with comparable in vivo performance, rendering them promising candidates for imaging tumors that overexpress VLA-4.
Collapse
Affiliation(s)
- Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lingyi Sun
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Huiling Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Bouhari Altine
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Dexing Zeng
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
14
|
11C-Labeled Pictilisib (GDC-0941) as a Molecular Tracer Targeting Phosphatidylinositol 3-Kinase (PI3K) for Breast Cancer Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1760184. [PMID: 31787861 PMCID: PMC6877939 DOI: 10.1155/2019/1760184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Pictilisib (GDC-0941) is an inhibitor of phosphatidylinositol 3-kinase (PI3K), part of a signaling cascade involved in breast cancer development. The purpose of this study was to evaluate the pharmacokinetics of pictilisib noninvasively by radiolabeling it with 11C and to assess the usability of the resulting [11C]-pictilisib as a positron-emission tomography (PET) tracer to screen for pictilisib-sensitive tumors. In this study, pictilisib was radiolabeled with [11C]-methyl iodide to obtain 11C-methylated pictilisib ([11C]-pictilisib) using an automated synthesis module with a high radiolabeling yield. Considerably higher uptake ratios were observed in MCF-7 (PIK3CA mutation, pictilisib-sensitive) cells than those in MDA-MB-231 (PIK3CA wild-type, pictilisib-insensitive) cells at all evaluated time points, indicating good in vitro binding of [11C]-pictilisib. Dynamic micro-PET scans in mice and biodistribution results showed that [11C]-pictilisib was mainly excreted via the hepatobiliary tract into the intestines. MCF-7 xenografts could be clearly visualized on the static micro-PET scans, while MDA-MB-231 tumors could not. Biodistribution results of two xenograft models showed significantly higher uptake and tumor-to-muscle ratios in the MCF-7 xenografts than those in MDA-MB-231 xenografts, exhibiting high in vivo targeting specificity. In conclusion, [11C]-pictilisib was first successfully prepared, and it exhibited good potential to identify pictilisib-sensitive tumors noninvasively, which may have a great impact in the treatment of cancers with an overactive PI3K/Akt/mTOR signal pathway. However, the high activity in hepatobiliary system and intestines needs to be addressed.
Collapse
|
15
|
Altine B, Gai Y, Han N, Jiang Y, Ji H, Fang H, Niyonkuru A, Bakari KH, Rajab Arnous MM, Liu Q, Zhang Y, Lan X. Preclinical Evaluation of a Fluorine-18 ( 18F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging. Mol Pharm 2019; 16:4563-4571. [PMID: 31553879 DOI: 10.1021/acs.molpharmaceut.9b00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Breast cancer is one of the commonest malignancies in women, especially in middle-aged and elderly women. Abnormal activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKt/mTOR) pathway has been found to be involved in breast cancer proliferation. Pictilisib (GDC-0941) is a potent inhibitor of PI3K with high affinity and is undergoing phase 2 clinical trials. In this study, we aimed to develop a noninvasive PI3K radiotracer to help determine the mechanism of the PI3K/AKt/mTOR pathway to aid in diagnosis. We designed a new 18F-radiolabeled radiotracer based on the structure of pictilisib, to evaluate noninvasively abnormal activation of the PI3K/AKT/mTOR pathway. To increase the water solubility, and to decrease hepatobiliary and gastrointestinal uptake of the tracer, pictilisib was modified with triethylene glycol di(p-toluenesulfonate) (TsO-PEG3-OTs) to obtain TsO-PEG3-GDC-0941 as the precursor for 18F labeling. A nonradiolabeled reference compound [19F]-PEG3-GDC-0941 was also prepared. Breast cancer cell lines, MCF-7 and MDA-MB-231, were used as high- and low-expression PI3K models, respectively. PET imaging and ex vivo biodistribution assays of [18F]-PEG3-GDC-0941 in MCF-7 and MDA-MB-231 xenografts were also performed, and the results were compared. The precursor compound and reference standard compound were successfully synthesized and identified using NMR and mass spectroscopy. The 18F radiolabeling was achieved with a high yield (61 ± 1%) at a high molar activity (2100 ± 100 MBq/mg). MicroPET images and biodistribution studies showed a higher uptake of the radiotracer in MCF-7 tumors than in MDA-MB-231 tumors (7.56 ± 1.01%ID/g vs 4.07 ± 0.68%ID/g, 1 h postinjection). Additionally, the MCF-7 tumor uptake was significantly decreased when a blocking dose of GDC-0941 was coinjected, indicating high specificity. The liver was found to be the major excretory organ with 5.82 ± 0.88%ID/g at 30 min postinjection for MCF-7 mice. This radiotracer holds great potential for patient screening, diagnosis, and therapy prediction of PI3K-related diseases.
Collapse
Affiliation(s)
- Bouhari Altine
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Na Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Alexandre Niyonkuru
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Khamis Hassan Bakari
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Maher Mohamad Rajab Arnous
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| |
Collapse
|
16
|
Xu X, Yuan L, Gai Y, Liu Q, Yin L, Jiang Y, Wang Y, Zhang Y, Lan X. Targeted radiotherapy of pigmented melanoma with 131I-5-IPN. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:306. [PMID: 30537980 PMCID: PMC6288928 DOI: 10.1186/s13046-018-0983-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Purpose There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent. Methods The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data. Results 131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT. Conclusion We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lianglan Yin
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
17
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|