1
|
Nunes RS, Freitas Mariano KC, Pieretti JC, Dos Reis RA, Seabra AB. Innovative nitric oxide-releasing nanomaterials: Current progress, trends, challenges, and perspectives in cardiovascular therapies. Nitric Oxide 2025; 156:67-81. [PMID: 40139304 DOI: 10.1016/j.niox.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, imposing a substantial impact on healthcare systems due to high morbidity, mortality, and associated economic costs. Nitric oxide (NO), a key signaling molecule in the cardiovascular system, plays a critical role in regulating vascular homeostasis, angiogenesis, and inflammation. Despite its therapeutic potential, direct NO delivery in the cardiovascular system is limited by its reactivity, short half-life, and poor bioavailability. The development of NO-releasing nanomaterials addresses these challenges by enabling controlled, targeted, and sustained NO delivery, mitigating systemic toxicity and improving therapeutic outcomes. This review provides a comprehensive overview of recent advancements in the design, functionalization, and application of NO-releasing nanomaterials for cardiovascular therapies. Key topics include the use of in vitro and in vivo models to evaluate efficacy in conditions such as myocardial ischemia-reperfusion injury, thrombosis, and atherosclerosis, as well as the role of stimuli-responsive systems and hybrid nanomaterials in enhancing delivery precision. Advances in nanotechnology, such as stimuli-responsive systems and hybrid functionalized nanomaterials for targeted delivery, have enhanced the precision and effectiveness of NO therapeutic effects for treating a wide spectrum of cardiovascular conditions. However, challenges like scalable production, biocompatibility, and integration with existing therapies remain. Future research should focus on interdisciplinary approaches to optimize these materials for clinical translation, ensuring accessibility and addressing the global problem of cardiovascular diseases.
Collapse
Affiliation(s)
- Renan S Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| | - Kelli C Freitas Mariano
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Roberta A Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
2
|
do Prado-Souza LFL, Ferraz LS, Citrangulo Tortelli T, Ribeiro CAJ, do Amaral DT, Arruda DC, de Oliveira ÉA, Chammas R, Maria-Engler SS, Rodrigues T. Exploiting Paradoxical Activation of Oncogenic MAPK Signaling by Targeting Mitochondria to Sensitize NRAS Mutant-Melanoma to Vemurafenib. Int J Mol Sci 2025; 26:2675. [PMID: 40141318 PMCID: PMC11942190 DOI: 10.3390/ijms26062675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Vemurafenib is a BRAF (rapidly accelerated fibrosarcoma B-type)-targeted therapy used to treat patients with advanced, unresectable melanoma. It inhibits the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathway and tumor proliferation in BRAFV600E-mutated melanoma cells. Resistance to vemurafenib has been reported in melanoma patients due to secondary NRAS (neuroblastoma RAS viral oncogene homolog) mutations, which lead to paradoxical MAPK pathway activation and tumor proliferation. However, the impact of this paradoxical activation on mitochondrial dynamics and function in NRAS-mutated melanoma is unclear. Here, we investigated the effects of vemurafenib on NRASQ61R-mutated melanoma cells, focusing on mitochondrial dynamics and function. As expected, vemurafenib did not exhibit cytotoxicity in SK-MEL-147 NRASQ61R-mutated melanoma cells, even after 72 h of incubation. However, it significantly enhanced the MAPK/ERK signaling through paradoxical activation, accompanied by decreased expression of mitochondrial fusion proteins and activation of the fission protein DRP1 (dynamin-related protein 1), leading to small, rounded mitochondrial morphology. These observations were corroborated by transcriptome data obtained from NRAS-mutated melanoma patients, showing MFN1 (mitofusin 1) and OPA1 (optic atrophy 1) downregulation and DNM1L (DRP1 gene) upregulation. Interestingly, inhibition of mitochondrial fission with mdivi-1 or modulation of oxidative phosphorylation via respiratory chain inhibition or uncoupling significantly sensitized NRASQ61R-mutated melanoma cells to vemurafenib. Despite vemurafenib's low cytotoxicity in NRAS-mutated melanoma, targeting mitochondrial dynamics and/or oxidative phosphorylation may offer a promising strategy for combined therapy.
Collapse
Affiliation(s)
- Laura Francisca Leite do Prado-Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Letícia Silva Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Tharcísio Citrangulo Tortelli
- Center for Translational Research in Oncology (LIM24), Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil; (T.C.T.J.); (R.C.)
- Comprehensive Center for Precision Oncology, University of São Paulo, Sao Paulo 05508-220, Brazil
| | - César Augusto João Ribeiro
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Danilo Trabuco do Amaral
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Denise Costa Arruda
- Integrated Biotechnology Nucleus (NIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, Sao Paulo 08780-911, Brazil;
| | | | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil; (T.C.T.J.); (R.C.)
- Comprehensive Center for Precision Oncology, University of São Paulo, Sao Paulo 05508-220, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| |
Collapse
|
3
|
Liang F, Wang M, Li J, Guo J. The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int 2024; 24:408. [PMID: 39702281 DOI: 10.1186/s12935-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
S-nitrosylation (SNO) modification, a nitric oxide (NO)-mediated post-translational modification (PTM) of proteins, plays an important role in protein microstructure, degradation, activity, and stability. Due to the presence of reducing agents, the SNO modification process mediated by NO derivatives is often reversible and unstable. This reversible transformation between SNO modification and denitrification often influences the structure, activity, and function of proteins. The reversibility of SNO modifications also poses a challenge when verifying changes in the biological functions of proteins. Moreover, SNO modification of key signaling pathway proteins, such as caspase-3, NF-κB, and Bcl-2, can affect tumor proliferation, invasion, and apoptosis. The SNO-modified proteins play important roles in both promoting and inhibiting cancer, which indirectly confirms the duality and complexity of SNO modification functions. This article reviews the biological significance of various SNO-modified proteins in different cancers, providing a theoretical basis for determining whether the related changes of SNO-modified proteins are universal in cancers. Additionally, this review presents a comprehensive and detailed summary of the evolution of detection methods for SNO-modified proteins, providing a possible methodological basis for future research on SNO-modified proteins.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Grayton QE, El-Ahmad H, Lynch AL, Nogler ME, Wallet SM, Schoenfisch MH. Nitric Oxide-Releasing Topical Treatments for Cutaneous Melanoma. Mol Pharm 2024; 21:5632-5645. [PMID: 39353049 PMCID: PMC11875128 DOI: 10.1021/acs.molpharmaceut.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Melanoma is an aggressive skin cancer notorious for high levels of drug resistance. Additionally, current treatments such as immunotherapies are often associated with numerous adverse side effects. The use of nitric oxide (NO) may represent an attractive treatment for melanoma due to NO's various anticancer properties, unlikeliness to foster resistance, and limited toxicity toward healthy tissues. The anticancer effects of chemical NO donors have been explored previously but with limited understanding of the needed characteristics for exerting optimal antimelanoma activity. Herein, the in vitro therapeutic efficacy of three macromolecular NO donor systems (i.e., cyclodextrin, mesoporous silica nanoparticles, and hyaluronic acid) with tunable NO-release kinetics was explored by evaluating skin permeation along with toxicity against melanoma and healthy skin cells. Cytotoxicity against melanoma cells was dependent on NO payload and not donor identity or NO-release kinetics. In contrast, cytotoxicity against healthy cells was primarily influenced by the macromolecular NO donor, with cyclodextrin- and hyaluronic acid-based NO donors having the highest therapeutic indices. In vitro skin permeation was influenced by both the size and charge of the NO donor, with smaller, more neutral donors resulting in greater permeation. A Pluronic F127 organogel was optimized for the delivery of a cyclodextrin-based NO donor. Delivery of the NO donor in this manner resulted in increased in vitro skin permeation and reduced tumor growth in an in vivo model.
Collapse
Affiliation(s)
- Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Heba El-Ahmad
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, United States
| | - Anna L Lynch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mikaylin E Nogler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review. Curr Med Chem 2024; 31:3488-3501. [PMID: 37202890 DOI: 10.2174/0929867330666230518143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients' 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Diaz MJ, Natarelli N, Aflatooni S, Aleman SJ, Neelam S, Tran JT, Taneja K, Lucke-Wold B, Forouzandeh M. Nanoparticle-Based Treatment Approaches for Skin Cancer: A Systematic Review. Curr Oncol 2023; 30:7112-7131. [PMID: 37622997 PMCID: PMC10453819 DOI: 10.3390/curroncol30080516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Nanoparticles have shown marked promise as both antineoplastic agents and drug carriers. Despite strides made in immunomodulation, low success rates and toxicity remain limitations within the clinical oncology setting. In the present review, we assess advances in drug delivery nanoparticles, for systemic and topical use, in skin cancer treatment. A systematic review of controlled trials, meta-analyses, and Cochrane review articles was conducted. Eligibility criteria included: (1) a primary focus on nanoparticle utility for skin cancer; (2) available metrics on prevention and treatment outcomes; (3) detailed subject population; (4) English language; (5) archived as full-text journal articles. A total of 43 articles were selected for review. Qualitative analysis revealed that nanoscale systems demonstrate significant antineoplastic and anti-metastasis properties: increased drug bioavailability, reduced toxicity, enhanced permeability and retention effect, as well as tumor growth inhibition, among others. Nanoformulations for skin cancers have largely lagged behind those tested in other cancers-several of which have commercialized formulae. However, emerging evidence has indicated a powerful role for these carriers in targeting primary and metastatic skin cancers.
Collapse
Affiliation(s)
| | - Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Sarah J. Aleman
- School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Sphurti Neelam
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Kamil Taneja
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Mahtab Forouzandeh
- Department of Dermatology, University of Florida, Gainesville, FL 32606, USA
| |
Collapse
|
7
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Tang L, Wu P, Zhuang H, Qin Z, Yu P, Fu K, Qiu P, Liu Y, Zhou Y. Nitric oxide releasing polyvinyl alcohol and sodium alginate hydrogels as antibacterial and conductive strain sensors. Int J Biol Macromol 2023; 241:124564. [PMID: 37094648 DOI: 10.1016/j.ijbiomac.2023.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Conductive hydrogels have promising applications in flexible electronic devices and artificial intelligence, which have attracted much attention in recent years. However, most conductive hydrogels have no antimicrobial activity, inevitably leading to microbial infections during utilization. In this work, a series of antibacterial and conductive polyvinyl alcohol and sodium alginate (PVA-SA) hydrogels were successfully developed with the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) and MXene through a freeze-thaw approach. Due to the reversibility of hydrogen bonding and electrostatic interactions, the resulting hydrogels had excellent mechanical properties. Specifically, the presence of MXene readily interrupted the crosslinked hydrogel network, but the best stretching can reach up to >300 %. Moreover, the impregnation of SNAP achieved the release of NO over several days under physiological conditions. Due to the release of NO, these composited hydrogels demonstrated high antibacterial activities (> 99 %) against both Gram-positive and negative S. aureus and E. coli bacteria. Notably, the excellent conductivity of MXene endowed the hydrogel with a sensitive, fast, and stable strain-sensing ability, to accurately monitor and distinguish subtle physiological activities of the human body including finger bending and pulse beating. These novel composited hydrogels are likely to have potential as strain-sensing materials in the field of biomedical flexible electronics.
Collapse
Affiliation(s)
- Lingjuan Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Hao Zhuang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Ziyu Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Ping Qiu
- Haikou Wuyuanhe School, Haikou, Hainan 570312, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
9
|
Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers (Basel) 2022; 14:4652. [PMID: 36230575 PMCID: PMC9562203 DOI: 10.3390/cancers14194652] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest skin cancer, whose morbidity and mortality indicators show an increasing trend worldwide. In addition to its great heterogeneity, melanoma has a high metastatic potential, resulting in very limited response to therapies currently available, which were restricted to surgery, radiotherapy and chemotherapy for many years. Advances in knowledge about the pathophysiological mechanisms of the disease have allowed the development of new therapeutic classes, such as immune checkpoint and small molecule kinase inhibitors. However, despite the incontestable progress in the quality of life and survival rates of the patients, effectiveness is still far from desired. Some adverse side effects and resistance mechanisms are the main barriers. Thus, the search for better options has resulted in many clinical trials that are now investigating new drugs and/or combinations. The low water solubility of drugs, low stability and rapid metabolism limit the clinical potential and therapeutic use of some compounds. Thus, the research of nanotechnology-based strategies is being explored as the basis for the broad application of different types of nanosystems in the treatment of melanoma. Future development focus on challenges understanding the mechanisms that make these nanosystems more effective.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
The Nitric Oxide Donor [Zn(PipNONO)Cl] Exhibits Antitumor Activity through Inhibition of Epithelial and Endothelial Mesenchymal Transitions. Cancers (Basel) 2022; 14:cancers14174240. [PMID: 36077778 PMCID: PMC9454450 DOI: 10.3390/cancers14174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Nitric oxide (NO) plays a critical pathophysiological role in cancer by modulating several processes, such as angiogenesis, tumor growth, and metastatic potential. The aim of this study was to characterize the antitumor effects of a novel NO donor, [Zn(PipNONO)Cl], on the processes of epithelial– and endothelial–mesenchymal transitions (EMT and EndMT), known to actively participate in cancer progression. Two tumor cells lines were used in this study: human lung cancer cells (A549) and melanoma cells (A375), alone and co-cultured with human endothelial cells. Our results demonstrate that both tumor and endothelial cells were targets of NO action, which impaired EMT and EndMT functional and molecular features. Further studies are needed to finalize the therapeutic use of the novel NO donor. Abstract Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial–mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-β1 (TGF-β1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-β1, and restoration of the epithelial marker E-cadherin, reduced by TGF-β1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial–mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes.
Collapse
|
11
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
12
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
13
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
14
|
Theivendran S, Yu C. Nanochemistry Modulates Intracellular Decomposition Routes of S-Nitrosothiol Modified Silica-Based Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007671. [PMID: 33860647 DOI: 10.1002/smll.202007671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Cellular delivery of nitric oxide (NO) using NO donor moieties such as S-nitrosothiol (SNO) is of great interest for various applications. However, understandings of the intracellular decomposition routes of SNO toward either NO or ammonia (NH3 ) production are surprisingly scarce. Herein, the first report of SNO modified mesoporous organosilica nanoparticles with tetrasulfide bonds for enhanced intracellular NO delivery, ≈10 times higher than a commercial NO donor, is presented. The tetrasulfide chemistry modulates the SNO decomposition by shifting from NH3 to NO production in glutathione rich cancer cells. This study provides a new strategy to control the NO level in biological systems.
Collapse
Affiliation(s)
- Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
15
|
Urzedo AL, Gonçalves MC, Nascimento MH, Lombello CB, Nakazato G, Seabra AB. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110933. [DOI: 10.1016/j.msec.2020.110933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 01/12/2023]
|
16
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
17
|
Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater Sci Eng 2020; 6:2117-2134. [DOI: 10.1021/acsbiomaterials.9b01685] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro L. Urzedo
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Marcelly C. Gonçalves
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Mônica H. M. Nascimento
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Christiane B. Lombello
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| |
Collapse
|
18
|
H. M. Nascimento M, T. Pelegrino M, C. Pieretti J, B. Seabra A. How can nitric oxide help osteogenesis? AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Pelegrino MT, Weller RB, Paganotti A, Seabra AB. Delivering nitric oxide into human skin from encapsulated S-nitrosoglutathione under UV light: An in vitro and ex vivo study. Nitric Oxide 2020; 94:108-113. [DOI: 10.1016/j.niox.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023]
|
20
|
Xiao W, Zhang W, Huang H, Xie Y, Zhang Y, Guo X, Jin C, Liao X, Yao S, Chen G, Song X. Cancer Targeted Gene Therapy for Inhibition of Melanoma Lung Metastasis with eIF3i shRNA Loaded Liposomes. Mol Pharm 2019; 17:229-238. [PMID: 31765158 DOI: 10.1021/acs.molpharmaceut.9b00943] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation factors 3i (eIF3i) is a proto-oncogene that is overexpressed in various tumors, reducing its expression by eIF3i shRNA is a promising strategy to inhibit tumor growth or metastasis. Tumor cell is the target of eIF3i shRNA so that tumor-site accumulation could be important for fulfilling its therapeutic effect. Thus, the iRGD modified liposome (R-LP) was rationally synthesized to enhance the antitumor effect by active targeted delivery of eIF3i shRNA to B16F10 melanoma cells. R-LP encapsulating eIF3i shRNA gene (R-LP/sheIF3i) were prepared by a film dispersion method. The transfection experiment proves that R-LP could effectively transfect B16F10 cells. R-LP/sheIF3i notably restrained the migration, invasion, and adhesion of melanoma cells in vitro. In a mouse model of lung metastasis, R-LP/sheIF3i administered by intravenous injection suppressed pulmonary metastasis of melanoma by dramatically downregulated eIF3i expression and subsequently inhibiting tumor neovascularization and tumor cells proliferation in vivo. Our results provide a basis for tumor cells targeting strategies to reduce the expression of eIF3i by RNAi in the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Wen Xiao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Weiyi Zhang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Hai Huang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Yafei Xie
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Yi Zhang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xia Guo
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Chaohui Jin
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xuelian Liao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Guo Chen
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| |
Collapse
|
21
|
Oliveira-Paula GH, Tanus-Santos JE. Nitrite-stimulated Gastric Formation of S-nitrosothiols As An Antihypertensive Therapeutic Strategy. Curr Drug Targets 2019; 20:431-443. [DOI: 10.2174/1389450119666180816120816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
Hypertension is usually associated with deficient nitric oxide (NO) bioavailability, and therefore stimulating NO activity is an important antihypertensive strategy. Recently, many studies have shown that both nitrite and nitrate anions are not simple products of NO metabolism and indeed may be reduced back to NO. While enzymes with nitrite-reductase activity capable of generating NO from nitrite may contribute to antihypertensive effects of nitrite, another mechanism involving the generation of NO-related species in the stomach from nitrite has been validated. Under the acidic conditions of the stomach, nitrite generates NO-related species that form S-nitrosothiols. Conversely, drugs that increase gastric pH may impair the gastric formation of S-nitrosothiols, which may mediate antihypertensive effects of oral nitrite or nitrate. Therefore, it is now becoming clear that promoting gastric formation of S-nitrosothiols may result in effective antihypertensive responses, and this mechanism opens a window of opportunity in the therapy of hypertension. In this review, we discuss the recent studies supporting the gastric generation of S-nitrosothiols as a potential antihypertensive mechanism of oral nitrite. We also highlight some drugs that increase S-nitrosothiols bioavailability, which may also improve the responses to nitrite/nitrate therapy. This new approach may result in increased nitrosation of critical pharmacological receptors and enzymes involved in the pathogenesis of hypertension, which tend to respond less to their activators resulting in lower blood pressure.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
22
|
Jin Q, Deng Y, Jia F, Tang Z, Ji J. Gas Therapy: An Emerging “Green” Strategy for Anticancer Therapeutics. ADVANCED THERAPEUTICS 2018; 1. [DOI: 10.1002/adtp.201800084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 09/09/2024]
Abstract
AbstractAs an emerging area, gas therapy has attracted more and more attention in treating many diseases including cancer. The fabrication of stimuli‐responsive delivery systems with on‐demand release behavior is very promising for precision gas therapy, which can obtain optimal therapeutic performance without gas poisoning risks. In this review, the authors introduce the recent progress in the preparation of different kinds of gas carriers for efficient delivery of gaseous molecules (NO, H2S, CO, O2). Particularly, in order to achieve targeted accumulation of gaseous molecules in tumor tissues, gaseous molecules–integrated nanoparticles were constructed. Most importantly, by combination of gas therapy with other therapeutic modalities such as chemotherapy, photodynamic therapy (PDT), and radiotherapy, various multifunctional nanocarriers have been designed for synergistic cancer therapy. Especially, the recent developments of multifunctional gas‐carrying nanocarriers for synergistic cancer therapy are discussed in detail.
Collapse
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Zhe Tang
- Department of Surgery Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou 310009 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
23
|
Pelegrino MT, De Araujo Lima B, Do Nascimento MHM, Lombello CB, Brocchi M, Seabra AB. Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications. Polymers (Basel) 2018; 10:E452. [PMID: 30966487 PMCID: PMC6415216 DOI: 10.3390/polym10040452] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) is involved in physiological processes, including vasodilatation, wound healing and antibacterial activities. As NO is a free radical, designing drugs to generate therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL)-chitosan (CS) hydrogel, with an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which corresponds to 1 mmol·L-1 of GSNO). Interestingly, the concentration range in which the NO-releasing hydrogel demonstrated an antibacterial effect was not found to be toxic to the Vero mammalian cell. Thus, the GSNO-PL/CS hydrogel is a suitable biomaterial for topical NO delivery applications.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| | - Bruna De Araujo Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Mônica H M Do Nascimento
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Christiane B Lombello
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Center for Engineering, Modeling and Applied Social Science, Universidade Federal do ABC, Alameda da Universidade sem numero, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| |
Collapse
|