1
|
He R, Jia B, Peng D, Chen W. Caged Polyprenylated Xanthones in Garcinia hanburyi and the Biological Activities of Them. Drug Des Devel Ther 2023; 17:3625-3660. [PMID: 38076632 PMCID: PMC10710250 DOI: 10.2147/dddt.s426685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.
Collapse
Affiliation(s)
- Ruixi He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Buyun Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
2
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
3
|
He K, Liu J, Gao Y, Hao Y, Yang X, Huang G. Preparation and Evaluation of Stearylamine-Bearing Pemetrexed Disodium-Loaded Cationic Liposomes In Vitro and In Vivo. AAPS PharmSciTech 2020; 21:193. [PMID: 32661922 DOI: 10.1208/s12249-019-1586-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Pemetrexed disodium (PMX) stands out in the treatment of non-small cell lung cancer (NSCLC), but with short half-life and toxic side effects. This study was to design cationic liposomes for targeting delivery PMX to the lungs. The PMX cationic liposome was prepared by thin-film hydration using stearylamine (SA) as the positive component of charge-regulating charge. Then, the PMX cationic liposome (SA-PMX-Lips) was characterized by particle size, morphology, entrapment efficiency (EE), and drug loading (DL). Finally, the drug release behavior in vitro, the pharmacokinetic study, and tissue distribution of SA-PMX-Lips were evaluated separately, with PMX solution (PMX-Sol) and PMX liposome (PMX-Lips) as the control. According to results, SA-PMX-Lips were spherical and the particle size was 219.7 ± 4.97 nm with a narrow polydispersity index (PDI) (0.231 ± 0.024) and a positive zeta potential 22.2 ± 0.52 mV. Its EE was 92.39 ± 1.94% and DL was 9.15 ± 0.07%. The results of in vitro and in vivo experiments showed that SA-PMX-Lips released slowly, prolonged retention time and increased the value of AUC. More notably, SA-PMX-Lips could improve the accumulation of drugs in the lungs and the relative uptake rate (Re) was 2.35 in the lungs, which indicated its lung targeting. In summary, SA-PMX-Lips showed the potential for the effective delivery of PMX and the treatment of NSCLC.
Collapse
|
4
|
Alekseeva LA, Sen'kova AV, Zenkova MA, Mironova NL. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:50-61. [PMID: 32146418 PMCID: PMC7058713 DOI: 10.1016/j.omtn.2020.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Tumor-associated cell-free DNAs (cfDNAs) are found to play some important roles at different stages of tumor progression; they are involved in the transformation of normal cells and contribute to tumor migration and invasion. DNase I is considered a promising cancer cure, due to its ability to degrade cfDNAs. Previous studies using murine tumor models have proved the high anti-metastatic potential of DNase I. Later circulating cfDNAs, especially tandem repeats associated with short-interspersed nuclear elements (SINEs) and long-interspersed nuclear elements (LINEs), have been found to be the enzyme's main molecular targets. Here, using Lewis lung carcinoma, melanoma B16, and lymphosarcoma RLS40 murine tumor models, we reveal that tumor progression is accompanied by an increase in the level of SINE and LINEs in the pool of circulating cfDNAs. Treatment with DNase I decreased in the number and area of metastases by factor 3-10, and the size of the primary tumor node by factor 1.5-2, which correlated with 5- to 10-fold decreasing SINEs and LINEs. We demonstrated that SINEs and LINEs from cfDNA of tumor-bearing mice are able to penetrate human cells. The results show that SINEs and LINEs could be important players in metastasis, and this allows them to be considered as attractive new targets for anticancer therapy.
Collapse
Affiliation(s)
- Ludmila A Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Shao F, Zhang M, Xu L, Yin D, Li M, Jiang Q, Zhang Q, Yang Y. Multiboosting of Cancer Immunotherapy by a Core-Shell Delivery System. Mol Pharm 2019; 17:338-348. [PMID: 31793786 DOI: 10.1021/acs.molpharmaceut.9b01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synergy of chemotherapy and antiangiogenesis therapy is a new strategy for cancer treatment. In this paper, a well-developed core-shell nanoparticle loaded with gambogic acid (GA), heparin (HP), and the immunoadjuvant cytosine-phosphate-guanine oligonucleotide (CpG ODN), called GHC NP, was constructed to treat hepatocellular carcinoma. GHC NPs with liver targeting activity can effectively inhibit tumor cell proliferation and angiogenesis. With the delivery of nanocarriers and the assistance of GA and HP, the GHC NPs can more effectively upregulate cytotoxic T cell (CTL) levels, promote helper T cell (Th cell) differentiation, and induce Th1 immune responses in long-term treatment compared with single CpG ODN. This synergistically enhanced immunotherapy might have universal application in cancer treatments.
Collapse
Affiliation(s)
- Fuping Shao
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Mengmeng Zhang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Li Xu
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Dengke Yin
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China.,Institute of Pharmaceutics , Anhui Academy of Chinese Medicine , Hefei 230012 , P. R. China
| | - Mengying Li
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Qianqian Jiang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Qingqing Zhang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Ye Yang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound , Hefei 230012 , P. R. China
| |
Collapse
|
6
|
Ren Y, Carcache de Blanco EJ, Fuchs JR, Soejarto DD, Burdette JE, Swanson SM, Kinghorn AD. Potential Anticancer Agents Characterized from Selected Tropical Plants. JOURNAL OF NATURAL PRODUCTS 2019; 82:657-679. [PMID: 30830783 PMCID: PMC6441492 DOI: 10.1021/acs.jnatprod.9b00018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants are well known for their value in affording clinically useful anticancer agents, with such compounds acting against cancer cells by a range of mechanisms of action. There remains a strong interest in the discovery and development of plant secondary metabolites as additional cancer chemotherapeutic lead compounds. In the present review, progress on the discovery of plant-derived compounds of the biflavonoid, lignan, sesquiterpene, steroid, and xanthone structural types is presented. Several potential anticancer leads of these types have been characterized from tropical plants collected in three countries as part of our ongoing collaborative multi-institutional project. Preliminary structure-activity relationships and work on in vivo testing and cellular mechanisms of action are also discussed. In addition, the relevant work reported by other groups on the same compound classes is included herein.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|