1
|
Madrid MF, Mendoza EN, Padilla AL, Choquenaira-Quispe C, de Jesus Guimarães C, de Melo Pereira JV, Barros-Nepomuceno FWA, Lopes Dos Santos I, Pessoa C, de Moraes Filho MO, Rocha DD, Ferreira PMP. In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:1-27. [PMID: 39363148 DOI: 10.1080/10937404.2024.2407452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of in vitro models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, in vitro models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect in vivo effectiveness of novel antitumor drugs.
Collapse
Affiliation(s)
- Maria Fernanda Madrid
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Eleicy Nathaly Mendoza
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Lizeth Padilla
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Celia Choquenaira-Quispe
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
- Catholic University of Santa María, Arequipa, Perú
| | - Celina de Jesus Guimarães
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - João Victor de Melo Pereira
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
2
|
Hayashi H, Hasegawa K, Saijo E, Kodama EN, Murayama K. Binding of a potential antibacterial drug, mangiferin, to serine hydroxymethyltransferase from Enterococcus faecium. Biochem Biophys Res Commun 2025; 743:151177. [PMID: 39693942 DOI: 10.1016/j.bbrc.2024.151177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Serine hydroxymethyltransferase (SHMT) plays a critical role in the 1C metabolism pathway. This pathway is involved in the synthesis of many amino and nucleic acids, and SHMT is considered a target for drugs through folate metabolism, especially for cancer and malaria. A detailed analysis of the interactions between SHMTs and drugs will greatly contribute to the development of new drugs. An anthraquinone compound was found in a compound library screening against SHMT from Enterococcus faecium (efmSHMT), from which mangiferin was implied as a compound that binds to efmSHMT. The binding assay indicated that mangiferin could bind to efmSHMT, and crystal structure analysis revealed interactions between efmSHMT and mangiferin at the binding site. Mangiferin bound to the binding site, turning the glucose moiety inward, which was supported by the docking model study. Although mangiferin does not share its molecular structure with other known inhibitors, such as pyrazolopyran-based compounds, the complex structure of the binding site did not differ much from those of other structures. The ligand binding site of efmSHMT may possess a preferred conformation.
Collapse
Affiliation(s)
- Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Sayo, Hyogo, Japan
| | - Erika Saijo
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Eiich N Kodama
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
3
|
Wang S, Wang SQ, Chen XB, Xu Q, Deng H, Teng QX, Chen ZS, Zhang X, Chen FE. Cell-Based Screen Identifies a Highly Potent and Orally Available ABCB1 Modulator for Treatment of Multidrug Resistance. J Med Chem 2024; 67:18764-18780. [PMID: 39425773 DOI: 10.1021/acs.jmedchem.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Targeting ABCB1 is a promising strategy in combating multidrug resistance. Our cell-based phenotypic screening led to the discovery of novel triazolo[1,5-a]pyrimidone-based ABCB1 modulators. Notably, WS-917 was identified as a significant contributor to heightened sensitization of human colorectal adenocarcinoma cells (SW620/Ad300) to paclitaxel (IC50 = 5 nM). Mechanistic elucidation revealed that this compound substantially augmented intracellular paclitaxel and [3H]-paclitaxel, concurrently mitigating the efflux of [3H]-paclitaxel in SW620/Ad300 through the inhibition of ABCB1 efflux. The cellular thermal shift assay underscored its ability to stabilize ABCB1 through direct binding. Additionally, WS-917 induced stimulation of ABCB1 ATPase activity while exhibiting negligible inhibitory effect against CYP3A4. Remarkable was its capacity to enhance the sensitivity of SW620/Ad300 to paclitaxel, as well as the sensitivity of CT26/TAXOL to paclitaxel and PD-L1 inhibitor (Atezolizumab) in vivo, all achieved without inducing observable toxicity. The discovery of WS-917 holds promise for the development of more potent ABCB1 modulators.
Collapse
Affiliation(s)
- Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Qian Xu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Hao Deng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Cao J, Du X, Zhao H, Zhu C, Li C, Zhang X, Wei L, Ke X. Sequentially degradable hydrogel-microsphere loaded with doxorubicin and pioglitazone synergistically inhibits cancer stemness of osteosarcoma. Biomed Pharmacother 2023; 165:115096. [PMID: 37421781 DOI: 10.1016/j.biopha.2023.115096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
Drug resistance represents one of the greatest challenges in cancer treatment. Cancer stem cells (CSCs) are thought to be the major cause of failure in cancer therapy due to their considerable resistance to most chemotherapeutic agents, resulting in tumor recurrence and eventually metastasis. Here, we report a treatment strategy for osteosarcoma using hydrogel-microspheres (Gel-Mps) complex mainly composed of collagenase (Col) and PLGA microspheres (Mps) carrying Pioglitazone (Pio) and Doxorubicin (Dox). Col was encapsulated in the thermosensitive gel to preferentially degrade tumor extracellular matrix (ECM), ensuring subsequent drug penetration, while Mps with Pio and Dox were co-delivered to synergistically inhibit tumor growth and metastasis. Our results showed that the Gel-Mps dyad functions as a highly biodegradable, extremely efficient, and low-toxic reservoir for sustained drug release, displaying potent inhibition of tumor proliferation and subsequent lung metastasis. Selective PPARγ agonist Pio reversed drug resistance to Dox by significantly down-regulating the expression of stemness markers and P-glycoprotein (P-gp) in osteosarcoma cells. The Gel@Col-Mps@Dox/Pio exhibited advanced therapeutic efficacy in vivo, demonstrating its great potential to serve a novel osteosarcoma therapy, which not only inhibits the growth of, but also attenuates the stemness of osteosarcoma. The dual effects reinforce the sensitivity and efficacy of chemotherapy.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China
| | - Xiaoxuan Du
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China
| | - Hui Zhao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China
| | - Chenhong Zhu
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China
| | - Chenchen Li
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China
| | - Xin Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China
| | - Libin Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China.
| | - Xue Ke
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
5
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
6
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
7
|
Teng YN, Kao MC, Huang SY, Wu TS, Lee TE, Kuo CY, Hung CC. Novel application of rhein and its prodrug diacerein for reversing cancer-related multidrug resistance through the dual inhibition of P-glycoprotein efflux and STAT3-mediated P-glycoprotein expression. Biomed Pharmacother 2022; 150:112995. [PMID: 35658243 DOI: 10.1016/j.biopha.2022.112995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug resistance (MDR) is a multifactorial issue in cancer treatment. Drug efflux transporters, particularly P-glycoprotein (P-gp), are major contributors to such resistance. In the present study, we evaluated the P-gp-inhibiting and MDR-reversing effects of two compounds, namely rhein, an anthraquinone, and diacerein, the acetylated prodrug of rhein. ABCB1/Flp-In-293 was used as a model for investigating the related molecular mechanisms, and the multi-drug-resistant cancer cell line KB/VIN was used as a platform for evaluating the reversal of MDR0. The results indicated that at a concentration of 2.5 μM, both diacerein and rhein significantly inhibited P-gp efflux function. They also downregulated P-gp expression by interacting with the signal transducer and activator of transcription 3. Further investigation of the inhibitory mechanism of these compounds revealed that both stimulated P-gp ATPase activity dose dependently and engaged in the noncompetitive inhibition of rhodamine 123 efflux. Furthermore, rhein was revealed to be a potent reverser of MDR in cancer, and the combination of 30 μM rhein and 1000 nM vincristine exerted a strong synergistic effect, achieving a high combination index (CI) of 0.092. Diacerein demonstrated potential applications as a selective cytotoxic agent against multi-drug-resistant cancer cells at a concentration of > 18.92 μM and as a mild MDR reverser at doses of < 10 μM. In conclusion, diacerein and rhein are potential candidates for P-gp inhibition and MDR reversal in cancer cells.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan.
| | - Ming-Chang Kao
- Department of Anesthesiology, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan.
| | - Shih-Ya Huang
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| | - Tsui-Er Lee
- Office of Physical Education, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City, Taiwan.
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan; Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
8
|
A Phenylfurocoumarin Derivative Reverses ABCG2-Mediated Multidrug Resistance In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222212502. [PMID: 34830383 PMCID: PMC8618058 DOI: 10.3390/ijms222212502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.
Collapse
|
9
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Beeran AA, Udupa N, Maliyakkal N. The Dichloromethane Fraction of Vernonia cinerea Impart Pro-Apoptotic, Genotoxic, Cell Cycle Arrest, and Drug Efflux Inhibitory Effects on Human Adenocarcinoma Cells. Recent Pat Anticancer Drug Discov 2020; 15:239-256. [PMID: 32838722 DOI: 10.2174/1574892815999200824122723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vernonia cinerea (VC) is an important medicinal plant used in the indigenous system of therapy. In ethnomedicine, VC has demonstrated anticancer properties. However, the mechanisms of action VC is not known. OBJECTIVE To establish the anticancer mechanisms of 'bioactive fractions of VC' on human adenocarcinoma cells. METHODS The IC50 values of characterized VC extract and fractions in human adenocarcinoma and normal epithelial cells were determined using Sulforhodamine B (SRB) assay. Acridine Orange- Ethidium Bromide (AO-EB) assay/Hoechst 33342 assay, Comet assay, and Cell cycle analysis were used to determine apoptosis, genotoxicity, and cell cycle-specific changes in cancer cells, respectively. Rhodamine 123 (Rho-123) efflux assay and Mitoxantrone (MX) efflux assay were used to assess the inhibition of Multidrug Resistance (MDR) transporters. RESULTS The dichloromethane fraction of VC (VC-DM) imparted dose-dependent cytotoxicity in human adenocarcinoma cells with fewer effects in human normal epithelial cells. This 'sesquiterpenoids' enriched fraction (VC-DM) induced apoptosis, DNA damage, genotoxicity, and G2/M phase arrest in human adenocarcinoma cells. Interestingly, VC-DM significantly inhibited the functional activity of MDR transporters (ABCB1 and ABCG2) and caused 'synergistic cytotoxic effects' with anticancer drugs in human adenocarcinoma cells. CONCLUSION The bioactivity guided fractionation of VC revealed that the specific 'sesquiterpenoids enriched fraction' (VC-DM) imparted cytotoxicity in human adenocarcinoma cells with fewer effects on normal cells. Mechanistic studies have shown that VC-DM induced apoptosis, DNA damage, genotoxicity, cell cycle arrest (G2/M), inhibited the functional activity of MDR transporters (ABCB1 and ABCG2), and produced 'synergistic cytotoxic effects' (combinatorial treatments with anticancer drugs) in human adenocarcinoma cells. Taken together, the findings of this study emphasize and validates VC-DM as a promising 'anticancer agent' against human adenocarcinomas, including those with a multi-drug resistant phenotype.
Collapse
Affiliation(s)
- Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Naseer Maliyakkal
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
11
|
Higuchi T, Sugisawa N, Miyake K, Oshiro H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Kline Z, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed Pharmacother 2019; 118:109356. [PMID: 31545293 DOI: 10.1016/j.biopha.2019.109356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance (MDR) which results in chemoresistance is a major problem in osteosarcoma. P-glycoprotein (P-gp) plays a critical role in MDR by pumping out chemotherapy agents. Peroxisome proliferator activated receptor gamma (PPARγ) is a nuclear receptor involved in cellular differentiation and proliferation. Recently, a correlation between the expression and activity of PPARγ and the expression of P-gp-associated with MDR, has been reported in several human cancers. The present study determined if pioglitazone (PIO), a PPARγ agonist, could modulate P-gp and overcome doxorubicin (DOX)-resistance in a patient-derived orthotopic xenograft (PDOX) model of osteosarcoma. P-gp mRNA expression was quantified in 143B human osteosarcoma cells treated with DOX with/without PIO. The osteosarcoma PDOX models were randomized into four treatment groups of six mice: Control; PIO alone; DOX alone; DOX and PIO combination. Tumor size and body weight were measured during the 14 days of treatment. DOX significantly induced P-gp mRNA in a dose-dependent manner in 143B cells. PIO inhibited the increase of P-gp mRNA induced by DOX treatment when co-administrated with DOX. Tumor growth was inhibited the most by the DOX-PIO combination. Tumors treated with the DOX-PIO combination also had the most tumor necrosis. This study suggests that the DOX-PIO combination could be used in the clinic for osteosarcoma patients who develop DOX-resistance.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sugisawa
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Zoey Kline
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|