1
|
Jha G, Sharma RB, Sridhar S, Hayagreev D, Sinha T, Kaur H, Das A, Bollineni RL. Nanoparticle-Based Therapies for Cardiovascular Diseases: A Literature Review of Recent Advances and Clinical Potential. Cureus 2024; 16:e72808. [PMID: 39552990 PMCID: PMC11569831 DOI: 10.7759/cureus.72808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) present a significant global health burden and remain the leading cause of morbidity and mortality worldwide. Conventional pharmacological therapies have yielded limited success in addressing the underlying pathophysiology of these diseases, leading to the exploration of novel therapeutic approaches. Nanotechnology is transforming cardiovascular disease management by enabling the engineering of materials at the atomic and molecular levels. This has led to the development of advanced diagnostic tools with unparalleled accuracy and sensitivity in detecting these diseases. By enabling targeted drug delivery, enhancing imaging techniques, and facilitating personalized therapies, nanotechnology promises significant advancements in the diagnosis, treatment, and prevention of cardiovascular diseases. This narrative review provides a comprehensive outlook on the recent advancements in nanoparticle-based therapies for cardiovascular diseases. We delve into the diverse applications of various nanoparticle types, exploring their potential to surpass the limitations of conventional treatments and improve clinical outcomes. Additionally, we critically examine the challenges and future directions of this rapidly evolving field, emphasizing the need for rigorous clinical evaluation.
Collapse
Affiliation(s)
- Gaurav Jha
- Trauma and Orthopaedics, Leicester Royal Infirmary, Leicester, GBR
| | - Ritika B Sharma
- Geriatrics, Pinderfields General Hospital, MidYorkshire, GBR
| | - Sruthi Sridhar
- Emergency Department, Croydon Health Services NHS Trust, London, GBR
| | - Disha Hayagreev
- Emergency Department, Basingstoke and North Hampshire Hospital, Basingstoke, GBR
| | - Tanya Sinha
- Emergency Medicine, South Tyneside and Sunderland NHS Foundation Trust, South Sheilds, GBR
| | | | - Adrija Das
- Medicine, Newcastle University, Newcastle, GBR
| | | |
Collapse
|
2
|
Lee H, Noh H. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023; 9:718. [PMID: 37754399 PMCID: PMC10529109 DOI: 10.3390/gels9090718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Nanomedicine in gel or particle formation holds considerable potential for enhancing passive and active targeting within ocular drug delivery systems. The complex barriers of the eye, exemplified by the intricate network of closely connected tissue structures, pose significant challenges for drug administration. Leveraging the capability of engineered nanomedicine offers a promising approach to enhance drug penetration, particularly through active targeting agents such as protein peptides and aptamers, which facilitate targeted release and heightened bioavailability. Simultaneously, DNA carriers have emerged as a cutting-edge class of active-targeting structures, connecting active targeting agents and illustrating their potential in ocular drug delivery applications. This review aims to consolidate recent findings regarding the optimization of various nanoparticles, i.e., hydrogel-based systems, incorporating both passive and active targeting agents for ocular drug delivery, thereby identifying novel mechanisms and strategies. Furthermore, the review delves into the potential application of DNA nanostructures, exploring their role in the development of targeted drug delivery approaches within the field of ocular therapy.
Collapse
Affiliation(s)
| | - Hyeran Noh
- Department of Optometry, Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
3
|
Tikhonova EG, Tereshkina YA, Kostryukova LV, Khudoklinova YY, Sanzhakov MA, Tamarovskaya AO, Ivankov OI, Kiselev MA. Study of Physico-Chemical Properties and Morphology of Phospholipid Composition of Indomethacin. NANOMATERIALS 2022; 12:nano12152553. [PMID: 35893521 PMCID: PMC9331955 DOI: 10.3390/nano12152553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), inhibitors of cyclooxygenase-2, an enzyme involved in the formation of anti-inflammatory prostaglandin PGE2, are the most common treatment for chronic inflammatory diseases, such as, for example, arthritis. One of the most commonly used drugs of this class is indomethacin, a derivative of indolylacetic acid. In this work, we studied the physicochemical properties of the phospholipid composition of indomethacin obtained earlier (codenamed “Indolip”) and the effect of freeze drying on its parameters. It was shown that the properties such as particle size, light transmission, phospholipid oxidation index did not change significantly, which indicated the stability of the drug after lyophilization. Measurement of the spectra of small-angle neutron scattering has shown that morphologically, Indolip is a vesicle whose radius is five times greater than the value of the bilayer thickness.
Collapse
Affiliation(s)
- Elena G. Tikhonova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St.,119121 Moscow, Russia; (E.G.T.); (Yu.A.T.); (L.V.K.); (M.A.S.)
| | - Yulia A. Tereshkina
- Institute of Biomedical Chemistry, 10 Pogodinskaya St.,119121 Moscow, Russia; (E.G.T.); (Yu.A.T.); (L.V.K.); (M.A.S.)
| | - Lyubov V. Kostryukova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St.,119121 Moscow, Russia; (E.G.T.); (Yu.A.T.); (L.V.K.); (M.A.S.)
| | - Yulia Yu. Khudoklinova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St.,119121 Moscow, Russia; (E.G.T.); (Yu.A.T.); (L.V.K.); (M.A.S.)
- Correspondence: ; Tel.: +7-(499)-246-3671
| | - Maxim A. Sanzhakov
- Institute of Biomedical Chemistry, 10 Pogodinskaya St.,119121 Moscow, Russia; (E.G.T.); (Yu.A.T.); (L.V.K.); (M.A.S.)
| | - Anna O. Tamarovskaya
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia; (A.O.T.); (O.I.I.); (M.A.K.)
| | - Oleksandr I. Ivankov
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia; (A.O.T.); (O.I.I.); (M.A.K.)
| | - Mikhail A. Kiselev
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia; (A.O.T.); (O.I.I.); (M.A.K.)
| |
Collapse
|
4
|
Tian P, Zhao X, Liu W, Zhang J. Preparation and application of cross-linked PVA microspheres with narrow particle size distribution by suspension polymerization using uniform porous tube. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Wang Z, Ye M, Ma D, Shen J, Fang F. Engineering of 177Lu-labeled gold encapsulated into dendrimeric nanomaterials for the treatment of lung cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:197-211. [PMID: 34686102 DOI: 10.1080/09205063.2021.1982446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As a novel type of theranostic radioactive agents, 177Lu-labeled nanomaterials conjugated to macromolecules have been described. The study aimed to fabricate PAMAM-G4-(177Lu-dendrimer)-bombesin-folate in the dendrimeric cavity, assess the radiopharmaceutical ability for specifically targeted radiotherapy and simultaneously detects gastrin-releasing peptide receptors (GRPR) and folate receptors (FRs) overexpressed in lung carcinoma cells, respectively. In an aqueous-basic media, p-SCN-benzyl-DOTA was conjugated to the dendrimer. This dendrimer was formed by activating the carboxylic acid groups of DOTA-folic acid and bombesin with HATU and conjugating them to develop the dendrimer. As part of this process, the conjugate was combined with 1% HAuCl4, added NaBH4 and filtered by ultrafiltration. Infrared, UV-Vis, TEM analysis, dynamic light scattering (DLS), and fluorescence spectroscopy were employed to observe the composition of the fabricated sample. Radio-labeled 177LuCl3 was used to label the conjugate, which was then evaluated using the radio-HPLC method. Findings demonstrated dendrimeric functionalization with remarkable radiochemical composition purity up to >96%. Because of fluorescence studies, it was determined that the occurrence of AuNMs in the dendrimeric cavities gives beneficial photo-physical characteristics to the radiopharmaceutical for bio-imaging. HEL-299 lung cancer cells exhibited a selective absorption of the drug (%). It might be helpful as nuclear and optical imaging agents for lung cancers that overexpress FRs and GRPR and as a specific target for radiation therapy if combined with folate-bombesin.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Minhua Ye
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Fang Fang
- Operating Room, Taizhou Hospital of Zhejiang Province, Taizhou, China
| |
Collapse
|
6
|
Dagallier C, Avry F, Touchefeu Y, Buron F, Routier S, Chérel M, Arlicot N. Development of PET Radioligands Targeting COX-2 for Colorectal Cancer Staging, a Review of in vitro and Preclinical Imaging Studies. Front Med (Lausanne) 2021; 8:675209. [PMID: 34169083 PMCID: PMC8217454 DOI: 10.3389/fmed.2021.675209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer death, making early diagnosis a major public health challenge. The role of inflammation in tumorigenesis has been extensively explored, and among the identified markers of inflammation, cyclooxygenase-2 (COX-2) expression seems to be linked to lesions with a poor prognosis. Until now, COX-2 expression could only be accessed by invasive methods, mainly by biopsy. Imaging techniques such as functional Positron Emission Tomography (PET) could give access to in vivo COX-2 expression. This could make the staging of the disease more accurate and would be of particular interest in the exploration of the first metastatic stages. In this paper, we review recent progress in the development of COX-2 specific PET tracers by comparing the radioligands' characteristics and highlighting the obstacles that remain to be overcome in order to achieve the clinical development of such a radiotracer, and its evaluation in the management of CRC.
Collapse
Affiliation(s)
- Caroline Dagallier
- Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Inserm UMR1253, iBrain, Université de Tours, Tours, France
| | - François Avry
- Inserm UMR1253, iBrain, Université de Tours, Tours, France
| | - Yann Touchefeu
- CRCINA, INSERM, CNRS, Nantes University, Nantes, France.,Institut des Maladies de l'Appareil Digestif, University Hospital, Nantes, France
| | - Frédéric Buron
- ICOA, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | | | - Michel Chérel
- CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Nicolas Arlicot
- Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Inserm UMR1253, iBrain, Université de Tours, Tours, France.,INSERM CIC 1415, CHRU de Tours, Tours, France
| |
Collapse
|
7
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
8
|
|
9
|
Gao Y, Shen M, Shi X. Interaction of dendrimers with the immune system: An insight into cancer nanotheranostics. VIEW 2021. [DOI: 10.1002/viw.20200120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai People's Republic of China
| |
Collapse
|
10
|
Liu Y, Hou L, Guo Q, Zhang M, Shi W. A Group of Complexes Based on PAMAM and Quantum Dots Used in Clinical Immunoassays. NANOSCALE RESEARCH LETTERS 2020; 15:71. [PMID: 32246298 PMCID: PMC7125291 DOI: 10.1186/s11671-020-3291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
We report a group of complexes used in clinical immunoassays. The complexes include a PAMAM-conjugated goat anti-rabbit IgG and a QDs-conjugated goat anti-mouse IgG. When rabbit anti-antigen and mouse anti-antigen are added, the corresponding antigen will be detected. The experiment, using the complexes, is simple, convenient, short in time, and short in steps. It is also applicable to different experiment methods, like to be used with FCM (flow cytometry), ICC (immunocytochemistry), and IHC (immunohistochemistry) to detect many kinds of antigens.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, Jilin University, Changchun, 130012, Jilin, China
- College of life sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Lu Hou
- Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, Jilin University, Changchun, 130012, Jilin, China
- College of life sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Qiong Guo
- Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, Jilin University, Changchun, 130012, Jilin, China
- College of life sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Mingjin Zhang
- Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, Jilin University, Changchun, 130012, Jilin, China
- College of life sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, Jilin University, Changchun, 130012, Jilin, China.
- College of life sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
11
|
Czarnomysy R, Bielawska A, Bielawski K. Effect of 2nd and 3rd generation PAMAM dendrimers on proliferation, differentiation, and pro-inflammatory cytokines in human keratinocytes and fibroblasts. Int J Nanomedicine 2019; 14:7123-7139. [PMID: 31564869 PMCID: PMC6731979 DOI: 10.2147/ijn.s211682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background Poly(amidoamine) (PAMAM) dendrimers are of considerable interest when used as a carrier for topical drugs for the skin, although little is known about their possible side effects. Therefore, our study was about the impact of 2nd and 3rd generation PAMAM dendrimers on human keratinocytes and fibroblasts cells. Methods The effect of the tested compounds on collagen biosynthesis was determined using 5[3H]-proline incorporation bioassay. Morphological changes accompanying cell growth inhibition were observed using a confocal microscope. To evaluate the percentage of apoptotic/necrotic cells and the cell growth dynamic of apoptotic features, we performed Annexin V/PI double staining assay, assessed caspase activity, and performed cell cycle analysis by flow cytometry. The flow cytometry method was also used to determine the effect of dendrimers on pro-inflammatory cytokines (IL-6, IL-8 IL-1β). Results The obtained results showed that as the concentration and the generation of dendrimers increased, collagen biosynthesis decreased. We also observed abnormalities in cell differentiation, which may have caused disturbed secretion of pro-inflammatory cytokines. We found that dendrimers cause chronic inflammation which may cause adverse changes in the skin, ultimately– leading to apoptosis in the case of dendrimers in lower concentrations or necrosis at higher concentrations (especially 3rd generation dendrimers). In addition, the inflammatory path induced by the tested compounds was caused by damage in the mitochondria, which we observed as a significant decrease in the mitochondrial membrane potential. Conclusion The results of our study showed that PAMAM dendrimers can cause disorders of cell proliferation and differentiation and may be the cause of cell cycle deregulation and chronic adverse inflammation.
Collapse
Affiliation(s)
- Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok 15-089, Poland
| |
Collapse
|
12
|
Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf B Biointerfaces 2019; 181:959-962. [DOI: 10.1016/j.colsurfb.2019.06.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/04/2023]
|