1
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
2
|
Yang M, Fu JD, Zou J, Sridharan D, Zhao MT, Singh H, Krigman J, Khan M, Xin G, Sun N. Assessment of mitophagy in human iPSC-derived cardiomyocytes. Autophagy 2022; 18:2481-2494. [PMID: 35220905 PMCID: PMC9542630 DOI: 10.1080/15548627.2022.2037920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defective mitophagy contributes to normal aging and various neurodegenerative and cardiovascular diseases. The newly developed methodologies to visualize and quantify mitophagy allow for additional progress in defining the pathophysiological significance of mitophagy in various model organisms. However, current knowledge regarding mitophagy relevant to human physiology is still limited. Model organisms such as mice might not be optimal models to recapitulate all the key aspects of human disease phenotypes. The development of the human-induced pluripotent stem cells (hiPSCs) may provide an exquisite approach to bridge the gap between animal mitophagy models and human physiology. To explore this premise, we take advantage of the pH-dependent fluorescent mitophagy reporter, mt-Keima, to assess mitophagy in hiPSCs and hiPSC-derived cardiomyocytes (hiPSC-CMs). We demonstrate that mt-Keima expression does not affect mitochondrial function or cardiomyocytes contractility. Comparison of hiPSCs and hiPSC-CMs during different stages of differentiation revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima hiPSC-CMs to analyze how mitophagy is altered under certain pathological conditions including treating the hiPSC-CMs with doxorubicin, a chemotherapeutic drug well known to cause life-threatening cardiotoxicity, and hypoxia that stimulates ischemia injury. We have further developed a chemical screening to identify compounds that modulate mitophagy in hiPSC-CMs. The ability to assess mitophagy in hiPSC-CMs suggests that the mt-Keima hiPSCs should be a valuable resource in determining the role mitophagy plays in human physiology and hiPSC-based disease models. The mt-Keima hiPSCs could prove a tremendous asset in the search for pharmacological interventions that promote mitophagy as a therapeutic target.Abbreviations: AAVS1: adeno-associated virus integration site 1; AKT/protein kinase B: AKT serine/threonine kinase; CAG promoter: cytomegalovirus early enhancer, chicken ACTB/β-actin promoter; CIS: cisplatin; CRISPR: clustered regularly interspaced short palindromic repeats; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; hiPSC: human induced pluripotent stem cell; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; ISO: isoproterenol; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RT: room temperature; SB: SBI-0206965; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mingchong Yang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ji-Dong Fu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Divya Sridharan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Judith Krigman
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nuo Sun
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,CONTACT Nuo Sun Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Gang Xin Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus43210, OH, USA
| |
Collapse
|
3
|
Liu J, Zhou T, Li R, Tian Z. Structural insights into the discrepant synergistic activity of Codlemone and (Z)-8-dodecenol towards Grapholita molesta pheromones. PEST MANAGEMENT SCIENCE 2022; 78:1953-1962. [PMID: 35085422 DOI: 10.1002/ps.6813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insect pheromone synergists have been widely used to produce potent pheromone products for environment-friendly pest control. Codlemone (Cod) and (Z)-8-dodecenol (Dod) are two major Grapholita molesta pheromone synergists, with Cod having greater synergism and affinity for G. molesta pheromone binding protein 2 (GmolPBP2). Uncovering structural information key to the different binding affinity of Cod and Dod to GmolPBP2 would gain insights into what causes their synergy activity discrepancy. RESULTS Binding modes of the two synergists in the binding pocket of GmolPBP2 were analyzed and compared by molecular dynamics-based approaches. Although Cod and Dod were stabilized in a similar hydrophobic pocket, their interaction details with GmolPBP2 were divergent due to the extra double bond (C10═C11) in Cod. The C10═C11 improved the hydrophobic interactions of Cod with around residues. Such hydrophobic interaction improvement was also reflected in the raised importance of Phe11 in the GmolPBP2-Cod interaction. Not only that, the increased hydrophobic forces introduced by the C10═C11 changed the CH2-OH orientation in the GmolPBP2-Cod complex, which improved the H-bond interaction. Electrostatic complementarity analysis further indicated the positive role of C10═C11 in optimizing GmolPBP2-Cod interaction. CONCLUSION The C10═C11 is thought to contribute greatly to Cod's stronger synergy as a group key to the higher GmolPBP2-affinity, based on which the improvement directions for Cod and Dod were addressed as well. Our findings will aid in the development and optimization of more effective pheromone synergists, resulting in more effective pheromone-based pest management.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Exploring disordered loops in DprE1 provides a functional site to combat drug-resistance in Mycobacterium strains. Eur J Med Chem 2021; 227:113932. [PMID: 34700267 DOI: 10.1016/j.ejmech.2021.113932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
As an anti-tuberculosis target, DprE1 contains two flexible loops (Loop I and Loop II) which have never been exploited for developing DprE1 inhibitors. Here Leu317 in Loop II was discovered as a new functional site to combat drug-resistance in Mycobacterium strains. Based on TCA1, LZDT1 was designed to optimize the hydrophobic interaction with Leu317. A subsequent biochemical and cellular assay displayed increased potency of LZDT1 in inhibiting DprE1 and killing drug-sensitive/-resistant Mycobacterium strains. The improved activity of LZDT1 and its analogue LZDT2 against multidrug resistant tuberculosis was particularly highlighted. For LZDT1, its enhanced interaction with Leu317 also impaired the drug-insensitivity of DprE1 caused by Cys387 mutation. A new nonbenzothiazole lead (LZDT10) with reduced Cys387-dependence was further produced by optimizing interactions with Leu317, improvement directions for LZDT10 were discussed as well. Our research underscores the value of potential functional sites in disordered loops, and affords a feasible way to develop these functional sites into opportunities for drug-resistance management.
Collapse
|
5
|
Shams R, Ito Y, Miyatake H. Mapping of mTOR drug targets: Featured platforms for anti-cancer drug discovery. Pharmacol Ther 2021; 232:108012. [PMID: 34624427 DOI: 10.1016/j.pharmthera.2021.108012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a regulatory protein kinase involved in cell growth and proliferation. mTOR is usually assembled in two different complexes with different regulatory mechanisms, mTOR complex 1 (mTORC1) and mTORC2, which are involved in different functions such as cell proliferation and cytoskeleton assembly, respectively. In cancer cells, mTOR is hyperactivated in response to metabolic alterations and/or oncogenic signals to overcome the stressful microenvironments. Therefore, recent research progress for mTOR inhibition involves a variety of compounds that have been developed to disturb the metabolic processes of cancer cells through mTOR inhibition. In addition to competitive or allosteric inhibition, a new inhibition strategy that emerged mTOR complexes destabilization has recently been a concern. Here, we review the history of mTOR and its inhibition, along with the timeline of the mTOR inhibitors. We also introduce prospective drug targets to inhibit mTOR by disrupting the complexation of the components with peptides and small molecules.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
6
|
Chaube UJ, Rawal R, Jha AB, Variya B, Bhatt HG. Design and development of Tetrahydro-Quinoline derivatives as dual mTOR-C1/C2 inhibitors for the treatment of lung cancer. Bioorg Chem 2020; 106:104501. [PMID: 33280832 DOI: 10.1016/j.bioorg.2020.104501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/08/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022]
Abstract
Lung cancer is one of the most prevailed cancer worldwide. Many genes get mutated in lung cancer but the involvement of EGFR, KRAS, PTEN and PIK3CA are more common. Unavailability of potent drugs and resistance to the available drugs are major concern in the treatment of lung cancer. In the present research, mTOR was selected as an important alternative target for the treatment of lung cancer which involves the PI3K/AKT/mTOR pathway. We studied binding interactions of AZD-2014 with the mTOR protein to identify important interactions required to design potent mTOR inhibitors which was supported by QSAR studies. Pharmacophore based virtual screening studies provided core scaffold, THQ. Based on molecular docking interactions, 31 THQ derivatives were synthesized and characterized. All compounds were screened for cellular mTOR enzyme assay along with antiproliferative activity against the panel of cancerous cell lines, from which 6 compounds were further screened for colony forming assay. Two most potent compounds, HB-UC-1 and HB-UC-5, were further screened for flow cytometry analysis, gene expression study and western blot analysis. Gene expression study revealed the efficiency of compound HB-UC-1 against both mTORC1 and mTORC2 by affecting downstream regulators of mTORC1 (E4BP4, eIF4EBP1) and mTORC2 (PCK1), respectively. In western blot analysis, both compounds, inhibited phosphorylation of AKT S473 which proved the efficiency these compounds against the mTORC2. These two compounds were further screened for in-vivo biological evaluation. Both compounds increased lifespan of cancer-bearing animals with improvement in mean survival time. Further, in bezopyrene induced lung cancer animal model, both compounds showed effectiveness through the biochemical parameters and histopathological evaluation of the lung tissue. In future, potent hit compound from this series could be modified to develop lead mTOR inhibitors for the treatment of lung cancer.
Collapse
Affiliation(s)
- Udit J Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| | - Rakesh Rawal
- Department of Life Sciences, Gujarat University, Ahmedabad 380 009, India
| | - Abhishek B Jha
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| | - Bhavesh Variya
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| | - Hardik G Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.
| |
Collapse
|
7
|
Zhou X, Zhou L, Ge X, Guo X, Han J, Zhang Y, Yang H. Quantitative Proteomic Analysis of Porcine Intestinal Epithelial Cells Infected with Porcine Deltacoronavirus Using iTRAQ-Coupled LC-MS/MS. J Proteome Res 2020; 19:4470-4485. [PMID: 33045833 PMCID: PMC7640975 DOI: 10.1021/acs.jproteome.0c00592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emergent enteropathogenic coronavirus associated with swine diarrhea. Porcine small intestinal epithelial cells (IPEC) are the primary target cells of PDCoV infection in vivo. Here, isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively identify differentially expressed proteins (DEPs) in PDCoV-infected IPEC-J2 cells. A total of 78 DEPs, including 23 upregulated and 55 downregulated proteins, were identified at 24 h postinfection. The data are available via ProteomeXchange with identifier PXD019975. To ensure reliability of the proteomics data, two randomly selected DEPs, the downregulated anaphase-promoting complex subunit 7 (ANAPC7) and upregulated interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), were verified by real-time PCR and Western blot, and the results of which indicate that the proteomics data were reliable and valid. Bioinformatics analyses, including GO, COG, KEGG, and STRING, further demonstrated that a majority of the DEPs are involved in numerous crucial biological processes and signaling pathways, such as immune system, digestive system, signal transduction, RIG-I-like receptor, mTOR, PI3K-AKT, autophagy, and cell cycle signaling pathways. Altogether, this is the first study on proteomes of PDCoV-infected host cells, which shall provide valuable clues for further investigation of PDCoV pathogenesis.
Collapse
Affiliation(s)
- Xinrong Zhou
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Lei Zhou
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Xinna Ge
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Xin Guo
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jun Han
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yongning Zhang
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Hanchun Yang
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
8
|
Gao S, Huang Q, Tang X, Qu X, Yu Y, Zhao Y, Tian L, Wu P, Gong H, Xu Y, Xu J. ZhiShiXiaoPi tang inhibits autophagy induced by corticosterone and functional dyspepsia through blockade of the mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111836. [PMID: 30922853 DOI: 10.1016/j.jep.2019.111836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ZhiShiXiaoPi Tang (ZSXPT) is a Chinese traditional medicine formula that contains 10 Chinese traditional medicine substances. It has been widely used to treat patients with functional dyspepsia (FD). However, the protective effect of ZSXPT and its molecular mechanisms in FD still remain elusive. AIM OF THE STUDY To investigate the protective effect of ZSXPT on autophagy induced by Corticosterone (Cort) in PC12 cells which have typical neuron characteristics and have been widely used as a model system for depression studies and FD rats, and explore its underlying mechanisms. MATERIALS AND METHODS In this study, high-performance liquid chromatography fingerprint analysis was performed to characterize the chemical composition of ZSXPT. Depression-induced autophagy, ROS generation, and changes in mitochondrial membrane potential (MMP) were investigated in Cort-induced PC12 cells and in FD rats to evaluate the protective effects of ZSXPT. RESULTS Our results show that ZSXPT treatment protects neurons against Cort-induced damage and apoptosis by increasing cell viability and reducing the release of lactate dehydrogenase. ZSXPT decreased Cort-induced ROS generation, increased MMP, and accelerated autophagy through the blockade of the mammalian target of rapamycin (mTOR) pathway. Moreover, we observed similar findings when we studied ZSXPT in a rat model of FD. CONCLUSIONS Our in vitro and in vivo results indicate that the neuroprotective effect of ZSXPT against autophagy-induced damage and apoptosis occurs mainly by blocking the mTOR pathway in Cort-induced PC12 cells and in FD rats. Taken together, these data provide reliable experimental evidence and explain the molecular mechanism by which ZSXPT ameliorates FD.
Collapse
Affiliation(s)
- Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, 130000, China
| | - Xiaotong Tang
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Xiaofeng Qu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Yanhui Yu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Yuanhui Zhao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Linlin Tian
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Ping Wu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Haiquan Gong
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Yun Xu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China.
| | - Jian Xu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China.
| |
Collapse
|