1
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
2
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Biali M, Auvity S, Cisternino S, Smirnova M, Hacker M, Zeitlinger M, Mairinger S, Tournier N, Bauer M, Langer O. Dissimilar Effect of P-Glycoprotein and Breast Cancer Resistance Protein Inhibition on the Distribution of Erlotinib to the Retina and Brain in Humans and Mice. Mol Pharm 2023; 20:5877-5887. [PMID: 37883694 PMCID: PMC10630959 DOI: 10.1021/acs.molpharmaceut.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 μg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.
Collapse
Affiliation(s)
- Myriam
El Biali
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Sylvain Auvity
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Salvatore Cisternino
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Maria Smirnova
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Marcus Hacker
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS,
Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, 91401 Orsay, France
| | - Martin Bauer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Zechner M, Castro Jaramillo CA, Zubler NS, Taddio MF, Mu L, Altmann KH, Krämer SD. In Vitro and In Vivo Evaluation of ABCG2 (BCRP) Inhibitors Derived from Ko143. J Med Chem 2023; 66:6782-6797. [PMID: 37154765 DOI: 10.1021/acs.jmedchem.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Breast cancer resistance protein (BCRP, ABCG2) is an efflux transporter that plays a crucial role in multidrug resistance to antineoplastic drugs. Ko143, an analogue of the natural product fumitremorgin C, is a potent inhibitor of ABCG2 but is rapidly hydrolyzed to an inactive metabolite in vivo. To identify ABCG2 inhibitors with improved metabolic stability, we have assessed a series of Ko143 analogues for their ability to inhibit ABCG2-mediated transport in ABCG2-transduced MDCK II cells and determined the stability of the most potent compounds in liver microsomes. The most promising analogues were evaluated in vivo by positron emission tomography. In vitro, three of the tested analogues were potent ABCG2 inhibitors and stable in microsomes. In vivo, they increased the distribution of the ABCG2/ABCB1 substrate [11C]tariquidar to the brain both in wild-type (with Abcb1a/b transport blocked by tariquidar) and Abcb1a/b(-/-) mice. One analogue was more potent than Ko143 in both animal models.
Collapse
Affiliation(s)
- Melanie Zechner
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Claudia A Castro Jaramillo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Nadine S Zubler
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Marco F Taddio
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
6
|
Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Löbsch M, Stanek J, Wanek T, Sake JA, Pekar T, Ehrhardt C, Langer O. Impact of P-gp and BCRP on pulmonary drug disposition assessed by PET imaging in rats. J Control Release 2022; 349:109-117. [PMID: 35798092 DOI: 10.1016/j.jconrel.2022.06.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two efflux transporters which are expressed in the apical (i.e. airway lumen-facing) membranes of lung epithelial cells. To assess the influence of P-gp and BCRP on the pulmonary disposition of inhaled drugs, we performed positron emission tomography (PET) imaging in rats after intratracheal aerosolization of two model P-gp/BCRP substrate radiotracers (i.e. [11C]erlotinib and [11C]tariquidar). We studied rat groups in which both transporters were active (i.e. wild-type rats), either of the two transporters was inactive (Abcb1a/b(-/-) and Abcg2(-/-) rats) or both transporters were inactive (Abcg2(-/-) rats in which pulmonary P-gp activity was inhibited by treatment with unlabeled tariquidar). PET-measured lung distribution data were compared with brain-to-plasma radioactivity concentration ratios measured in a gamma counter at the end of the PET scan. For [11C]erlotinib, lung exposure (AUClungs) was moderately but not significantly increased in Abcb1a/b(-/-) rats (1.6-fold) and Abcg2(-/-) rats (1.5-fold), and markedly (3.6-fold, p < 0.0001) increased in tariquidar-treated Abcg2(-/-) rats, compared to wild-type rats. Similarly, the brain uptake of [11C]erlotinib was substantially (4.5-fold, p < 0.0001) increased when both P-gp and BCRP activities were impaired. For [11C]tariquidar, differences in AUClungs between groups pointed into a similar direction as for [11C]erlotinib, but were less pronounced and lacked statistical significance. Our study demonstrates functional P-gp and BCRP activity in vivo in the lungs and further suggests functional redundancy between P-gp and BCRP in limiting the pulmonary uptake of a model P-gp/BCRP substrate, analogous to the blood-brain barrier. Our results suggest that pulmonary efflux transporters are important for the efficacy and safety of inhaled drugs and that their modulation may be exploited in order to improve the pharmacokinetic and pharmacodynamic performance of pulmonary delivered drugs.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Michael Sauberer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Thomas Pekar
- Biomedical Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Högnäsbacka A, Poot AJ, Vugts DJ, van Dongen GAMS, Windhorst AD. The Development of Positron Emission Tomography Tracers for In Vivo Targeting the Kinase Domain of the Epidermal Growth Factor Receptor. Pharmaceuticals (Basel) 2022; 15:ph15040450. [PMID: 35455447 PMCID: PMC9033078 DOI: 10.3390/ph15040450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple small molecule PET tracers have been developed for the imaging of the epidermal growth factor receptor (EGFR). These tracers target the tyrosine kinase (TK) domain of the receptor and have been used for both quantifying EGFR expression and to differentiate between EGFR mutational statuses. However, the approaches for in vivo evaluation of these tracers are diverse and have resulted in data that are hard to compare. In this review, we analyze the historical development of the in vivo evaluation approaches, starting from the first EGFR TK PET tracer [11C]PD153035 to tracers developed based on TK inhibitors used for the clinical treatment of mutated EGFR expressing non-small cell lung cancer like [11C]erlotinib and [18F]afatinib. The evaluation of each tracer has been compiled to allow for a comparison between studies and ultimately between tracers. The main challenges for each group of tracers are thereafter discussed. Finally, this review addresses the challenges that need to be overcome to be able to efficiently drive EGFR PET imaging forward.
Collapse
Affiliation(s)
- Antonia Högnäsbacka
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
- Correspondence: (A.H.); (A.D.W.)
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
- Correspondence: (A.H.); (A.D.W.)
| |
Collapse
|
8
|
Weng YY, Sun X, Wang LX, Liao YY, Wang CJ. Density functional methods study on the structures and spectral characteristics for pharmacophoric conformers, metabolites, and combined fragments of Erlotinib. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
[Drug-drug interactions of tyrosine kinase inhibitors in treatment of non-small-cell lung carcinoma]. Bull Cancer 2022; 109:358-381. [PMID: 35105467 DOI: 10.1016/j.bulcan.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
The development of tyrosine kinase inhibitors has revolutionized the treatment strategy in patients with non-small cell lung cancer with activating EGFR mutations, ALK or ROS-1 gene rearrangements. The Food and Drug Administration and European Medicines Agency have approved several inhibitors for the treatment of non-small cell lung cancer : five tyrosine kinase inhibitors targeting EGFR (erlotinib, gefitinib, afatinib, osimertinib and dacomitinib) and six tyrosine kinase inhibitors targeting ALK (crizotinib, céritinib, alectinib, brigatinib, lorlatinib and entrectinib). Interestingly, these tyrosine kinase inhibitor treatments are administered orally. While this route of administration improves the treatment flexibility and provides a comfortable and preferable option for patients, it also increases the risk of drug-drug interactions. The latter may result in changes in pharmacokinetics or pharmacodynamics of the tyrosine kinase inhibitors or their concomitant treatments, with subsequent risks of increasing their toxicity and/or reducing their effectiveness. This review provides an overview of drug-drug interactions with tyrosine kinase inhibitors targeting EGFR and ALK, as well as practical recommendations to guide oncologists and clinical pharmacists in the process of managing drug-drug interactions during the treatment of non-small cell lung cancer with tyrosine kinase inhibitors.
Collapse
|
10
|
Breuil L, Marie S, Goutal S, Auvity S, Truillet C, Saba W, Langer O, Caillé F, Tournier N. Comparative vulnerability of PET radioligands to partial inhibition of P-glycoprotein at the blood-brain barrier: A criterion of choice? J Cereb Blood Flow Metab 2022; 42:175-185. [PMID: 34496661 PMCID: PMC8721783 DOI: 10.1177/0271678x211045444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Only partial deficiency/inhibition of P-glycoprotein (P-gp, ABCB1) function at the blood-brain barrier (BBB) is likely to occur in pathophysiological situations or drug-drug interactions. This raises questions regarding the sensitivity of available PET imaging probes to detect moderate changes in P-gp function at the living BBB. In vitro, the half-maximum inhibitory concentration (IC50) of the potent P-gp inhibitor tariquidar in P-gp-overexpressing cells was significantly different using either [11C]verapamil (44 nM), [11C]N-desmethyl-loperamide (19 nM) or [11C]metoclopramide (4 nM) as substrate probes. In vivo PET imaging in rats showed that the half-maximum inhibition of P-gp-mediated efflux of [11C]metoclopramide, achieved using 1 mg/kg tariquidar (in vivo IC50 = 82 nM in plasma), increased brain exposure by 2.1-fold for [11C]metoclopramide (p < 0.05, n = 4) and 2.4-fold for [11C]verapamil (p < 0.05, n = 4), whereby cerebral uptake of the "avid" substrate [11C]N-desmethyl-loperamide was unaffected (p > 0.05, n = 4). This comparative study points to differences in the "vulnerability" to P-gp inhibition among radiolabeled substrates, which were apparently unrelated to their "avidity" (maximal response to P-gp inhibition). Herein, we advocate that partial inhibition of transporter function, in addition to complete inhibition, should be a primary criterion of evaluation regarding the sensitivity of radiolabeled substrates to detect moderate but physiologically-relevant changes in transporter function in vivo.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France.,Pharmacy Department, Robert-Debré Hospital, AP-HP, Université de Paris, Paris, France
| | - Solène Marie
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France.,Pharmacy Department, Bicêtre Hospital, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Sylvain Auvity
- Pharmacy Department, Necker Hospital, AP-HP, UMR-S 1144, Université de Paris, Paris, France
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Wadad Saba
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| |
Collapse
|
11
|
Blethen KE, Arsiwala TA, Fladeland RA, Sprowls SA, Panchal DM, Adkins CE, Kielkowski BN, Earp LE, Glass MJ, Pritt TA, Cabuyao YM, Aulakh S, Lockman PR. Modulation of the blood-tumor barrier to enhance drug delivery and efficacy for brain metastases. Neurooncol Adv 2021; 3:v133-v143. [PMID: 34859240 PMCID: PMC8633736 DOI: 10.1093/noajnl/vdab123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier is the selectively permeable vasculature of the brain vital for maintaining homeostasis and neurological function. Low permeability is beneficial in the presence of toxins and pathogens in the blood. However, in the presence of metastatic brain tumors, it is a challenge for drug delivery. Although the blood-tumor barrier is slightly leaky, it still is not permissive enough to allow the accumulation of therapeutic drug concentrations in brain metastases. Herein, we discuss the differences between primary brain tumors and metastatic brain tumors vasculature, effects of therapeutics on the blood-tumor barrier, and characteristics to be manipulated for more effective drug delivery.
Collapse
Affiliation(s)
- Kathryn E Blethen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Tasneem A Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Ross A Fladeland
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Samuel A Sprowls
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Dhruvi M Panchal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, Georgia, USA
| | - Brooke N Kielkowski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Leland E Earp
- Department of Cancer Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Morgan J Glass
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Trenton A Pritt
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Yssabela M Cabuyao
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Sonikpreet Aulakh
- Department of Cancer Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
12
|
Brain Metastasis Treatment: The Place of Tyrosine Kinase Inhibitors and How to Facilitate Their Diffusion across the Blood-Brain Barrier. Pharmaceutics 2021; 13:pharmaceutics13091446. [PMID: 34575525 PMCID: PMC8468523 DOI: 10.3390/pharmaceutics13091446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of brain metastases has been increasing constantly for the last 20 years, because of better control of metastases outside the brain, and the failure of most drugs to cross the blood–brain barrier at relevant pharmacological concentrations. Recent advances in the molecular biology of cancer have led to the identification of numerous molecular alterations, some of them targetable with the development of specific targeted therapies, including tyrosine kinase inhibitors. In this narrative review, we set out to describe the state-of-the-art in the use of tyrosine kinase inhibitors for the treatment of melanoma, lung cancer, and breast cancer brain metastases. We also report preclinical and clinical pharmacological data on brain exposure to tyrosine kinase inhibitors after oral administration and describe the most recent advances liable to facilitate their penetration of the blood–brain barrier at relevant concentrations and limit their physiological efflux.
Collapse
|
13
|
Hernández-Lozano I, Mairinger S, Traxl A, Sauberer M, Filip T, Stanek J, Kuntner C, Wanek T, Langer O. Assessing the Functional Redundancy between P-gp and BCRP in Controlling the Brain Distribution and Biliary Excretion of Dual Substrates with PET Imaging in Mice. Pharmaceutics 2021; 13:1286. [PMID: 34452247 PMCID: PMC8399697 DOI: 10.3390/pharmaceutics13081286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are co-localized at the blood-brain barrier, where they display functional redundancy to restrict the brain distribution of dual P-gp/BCRP substrate drugs. We used positron emission tomography (PET) with the metabolically stable P-gp/BCRP substrates [11C]tariquidar, [11C]erlotinib, and [11C]elacridar to assess whether a similar functional redundancy as at the BBB exists in the liver, where both transporters mediate the biliary excretion of drugs. Wild-type, Abcb1a/b(-/-), Abcg2(-/-), and Abcb1a/b(-/-)Abcg2(-/-) mice underwent dynamic whole-body PET scans after i.v. injection of either [11C]tariquidar, [11C]erlotinib, or [11C]elacridar. Brain uptake of all three radiotracers was markedly higher in Abcb1a/b(-/-)Abcg2(-/-) mice than in wild-type mice, while only moderately changed in Abcb1a/b(-/-) and Abcg2(-/-) mice. The transfer of radioactivity from liver to excreted bile was significantly lower in Abcb1a/b(-/-)Abcg2(-/-) mice and almost unchanged in Abcb1a/b(-/-) and Abcg2(-/-) mice (with the exception of [11C]erlotinib, for which biliary excretion was also significantly reduced in Abcg2(-/-) mice). Our data provide evidence for redundancy between P-gp and BCRP in controlling both the brain distribution and biliary excretion of dual P-gp/BCRP substrates and highlight the utility of PET as an upcoming tool to assess the effect of transporters on drug disposition at a whole-body level.
Collapse
Affiliation(s)
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
| | - Alexander Traxl
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Center of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Kuntner
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Tournier N, Goutal S, Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Caillé F, Breuil L, Stanek J, Freeman AF, Novarino G, Truillet C, Wanek T, Langer O. Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [ 11C]erlotinib. J Cereb Blood Flow Metab 2021; 41:1634-1646. [PMID: 33081568 PMCID: PMC8221757 DOI: 10.1177/0271678x20965500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict at the blood-brain barrier (BBB) the brain distribution of the majority of currently known molecularly targeted anticancer drugs. To improve brain delivery of dual ABCB1/ABCG2 substrates, both ABCB1 and ABCG2 need to be inhibited simultaneously at the BBB. We examined the feasibility of simultaneous ABCB1/ABCG2 inhibition with i.v. co-infusion of erlotinib and tariquidar by studying brain distribution of the model ABCB1/ABCG2 substrate [11C]erlotinib in mice and rhesus macaques with PET. Tolerability of the erlotinib/tariquidar combination was assessed in human embryonic stem cell-derived cerebral organoids. In mice and macaques, baseline brain distribution of [11C]erlotinib was low (brain distribution volume, VT,brain < 0.3 mL/cm3). Co-infusion of erlotinib and tariquidar increased VT,brain in mice by 3.0-fold and in macaques by 3.4- to 5.0-fold, while infusion of erlotinib alone or tariquidar alone led to less pronounced VT,brain increases in both species. Treatment of cerebral organoids with erlotinib/tariquidar led to an induction of Caspase-3-dependent apoptosis. Co-infusion of erlotinib/tariquidar may potentially allow for complete ABCB1/ABCG2 inhibition at the BBB, while simultaneously achieving brain-targeted EGFR inhibition. Our protocol may be applicable to enhance brain delivery of molecularly targeted anticancer drugs for a more effective treatment of brain tumors.
Collapse
Affiliation(s)
- Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sebastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France.,MIRCen, CEA/IBFJ/DRF-JACOB/LMN, UMR CEA CNRS 9199-Université Paris Saclay, Fontenay-aux-Roses, France
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Anna F Freeman
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
16
|
Marie S, Hernández-Lozano I, Breuil L, Truillet C, Hu S, Sparreboom A, Tournier N, Langer O. Imaging-Based Characterization of a Slco2b1(-/-) Mouse Model Using [ 11C]Erlotinib and [ 99mTc]Mebrofenin as Probe Substrates. Pharmaceutics 2021; 13:918. [PMID: 34205780 PMCID: PMC8233734 DOI: 10.3390/pharmaceutics13060918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/19/2023] Open
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is co-localized with OATP1B1 and OATP1B3 in the basolateral hepatocyte membrane, where it is thought to contribute to the hepatic uptake of drugs. We characterized a novel Slco2b1(-/-) mouse model using positron emission tomography (PET) imaging with [11C]erlotinib (a putative OATP2B1-selective substrate) and planar scintigraphic imaging with [99mTc]mebrofenin (an OATP1B1/1B3 substrate, which is not transported by OATP2B1). Dynamic 40-min scans were performed after intravenous injection of either [11C]erlotinib or [99mTc]mebrofenin in wild-type and Slco2b1(-/-) mice. A pharmacokinetic model was used to estimate the hepatic uptake clearance (CL1) and the rate constants for transfer of radioactivity from the liver to the blood (k2) and excreted bile (k3). CL1 was significantly reduced in Slco2b1(-/-) mice for both radiotracers (p < 0.05), and k2 was significantly lower (p < 0.01) in Slco2b1(-/-) mice for [11C]erlotinib, but not for [99mTc]mebrofenin. Our data support previous evidence that OATP transporters may contribute to the hepatic uptake of [11C]erlotinib. However, the decreased hepatic uptake of the OATP1B1/1B3 substrate [99mTc]mebrofenin in Slco2b1(-/-) mice questions the utility of this mouse model to assess the relative contribution of OATP2B1 to the liver uptake of drugs which are substrates of multiple OATPs.
Collapse
Affiliation(s)
- Solène Marie
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
- Département de Pharmacie Clinique, Faculté de Pharmacie, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- AP-HP, Université Paris-Saclay, Hôpital Bicêtre, Pharmacie Clinique, 94270 Le Kremlin Bicêtre, France
| | - Irene Hernández-Lozano
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (I.H.-L.); (O.L.)
| | - Louise Breuil
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
| | - Charles Truillet
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.H.); (A.S.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.H.); (A.S.)
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (I.H.-L.); (O.L.)
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
18
|
Wang F, Ji S, Wang M, Liu L, Li Q, Jiang F, Cen J, Ji B. HMGB1 promoted P-glycoprotein at the blood-brain barrier in MCAO rats via TLR4/NF-κB signaling pathway. Eur J Pharmacol 2020; 880:173189. [PMID: 32417325 DOI: 10.1016/j.ejphar.2020.173189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/28/2023]
Abstract
P-glycoprotein (P-gp) is located on the luminal surface of brain vascular endothelium and its status may determine the delivery of the agents into the brain tissues. Previous study showed that upregulation of P-gp at the blood-brain barrier (BBB) after ischemic stroke were mediated by nuclear factor-B (NF-kB) and tumour necrosis factor-α (TNF-α). Based on middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) in co-culture of rat brain microvessel endothelial cells (rBMECs) and astrocytes system, the present data indicated that potentiated P-gp expression and activity in brain microvessels or rBMECs were associated with the increase in high-mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4) and activation of NF-kB and that HMGB1 can release from nucleus to the cytoplasm in activated astrocytes, then into the medium. Moreover, changes in TLR4, TIR domain-containing adaptor protein (TIRAP), NF-kB and P-gp in rBMECs were attenuated by addition of 1 mM ethyl pyruvate (EP), 10 μM TAK-242 and 10 μM pyrrolidine dithiocarbamate (PDTC), respectively. These results demonstrated that HMGB1 promoted P-gp at the BBB after cerebral ischemia via TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cerebral Surgery, The Second People's Hospital of Zhengzhou, Zhengzhou, 450000, People's Republic of China; Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Shenglan Ji
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Muxi Wang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Qiaoling Li
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Fuxia Jiang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Biansheng Ji
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
19
|
Michaelidesová A, Konířová J, Bartůněk P, Zíková M. Effects of Radiation Therapy on Neural Stem Cells. Genes (Basel) 2019; 10:E640. [PMID: 31450566 PMCID: PMC6770913 DOI: 10.3390/genes10090640] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Brain and nervous system cancers in children represent the second most common neoplasia after leukemia. Radiotherapy plays a significant role in cancer treatment; however, the use of such therapy is not without devastating side effects. The impact of radiation-induced damage to the brain is multifactorial, but the damage to neural stem cell populations seems to play a key role. The brain contains pools of regenerative neural stem cells that reside in specialized neurogenic niches and can generate new neurons. In this review, we describe the advances in radiotherapy techniques that protect neural stem cell compartments, and subsequently limit and prevent the occurrence and development of side effects. We also summarize the current knowledge about neural stem cells and the molecular mechanisms underlying changes in neural stem cell niches after brain radiotherapy. Strategies used to minimize radiation-related damages, as well as new challenges in the treatment of brain tumors are also discussed.
Collapse
Affiliation(s)
- Anna Michaelidesová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Jana Konířová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Petr Bartůněk
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martina Zíková
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|