1
|
Soghrati S, Varshosaz J, Rostami M, Mirian M, Sharifianjazi F, Ta-vamaishvili K. Comparing the transfection efficiency of cationic monomer ratios in vinylimidazole and aminoethyl methacrylate copolymers. Int J Pharm X 2025; 9:100327. [PMID: 40124566 PMCID: PMC11930205 DOI: 10.1016/j.ijpx.2025.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Employing polycations as non-viral gene delivery vectors has been extensively studied owing to their safety, efficiency and possibility of modifying them in an intended way compared with viral vectors. However, the main challenge is finding a biocompatible and transfection-efficient polymer. In this study, 2-aminoethyl methacrylate (A) and 1-vinyl imidazole (V) were copolymerized at three different molar ratios by a free radical polymerization method and novel biocompatible polycations with narrow molecular weight distribution were obtained. The resulting copolymers were used for condensation of plasmid DNA (pDNA) at different N/P ratios followed by physicochemical characterizations of resulting polyplexes. At N/P ratio of 2, the nanoplexes were smaller than 120 nm. The optimum formulations were stable in presence of polyanions and capable of protecting the condensed pDNA against nucleases. The polyplexes having V to A molar ratio of 1:1 were the most efficient carrier in transfecting HeLa cells and were introduced as a promising non-viral vector.
Collapse
Affiliation(s)
- Sahel Soghrati
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, Georgia
| | - Ketevan Ta-vamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str, Tbilisi 0160, Georgia
| |
Collapse
|
2
|
Cordeiro R, Oliveira D, Santo D, Coelho J, Faneca H. Mesoporous silica-glycopolymer hybrid nanoparticles for dual targeted chemotherapy and gene therapy to liver cancer cells. Int J Pharm 2025; 675:125553. [PMID: 40187702 DOI: 10.1016/j.ijpharm.2025.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The development of nanocarriers for pharmaceutical applications is a challenging research field as they have to fulfil several requirements, such as suitable physicochemical properties, biocompatibility, loading capacity for therapeutic agents, high stability in the bloodstream, and specific delivery to the target cells. This task becomes even more difficult when trying to transport two different therapeutic agents simultaneously, as is required by most of the current therapeutic strategies. Mesoporous silica nanoparticles (MSN) fulfil most of these requirements, although they partially fail in the last two. However, these weaknesses can be circumvented if they are combined with another type of material such as polymers. In this context, the main goal of this research work was to develop MSN-based nanocarriers capable to co-transport drugs and nucleic acids and to specifically deliver them in liver cancer cells. To this end, we have prepared MSNs coated with lactobionic acid-based copolymers, as lactobionic acid has a high binding affinity to asialoglycoprotein receptors (ASGPR), which are overexpressed in liver cells. The designed hybrid MSN-based nanocarriers exhibited appropriate physicochemical properties, high ASGPR specificity and high biological activity. These MSN-glycopolymer hybrid nanosystems showed a 280-fold higher transfection activity in liver cancer cells than bare MSN particles. Furthermore, we demonstrated the ability of these nanosystems to efficiently mediate a combined antitumor strategy involving HSV-TK/GCV suicide gene therapy and chemotherapy (epirubicin), in liver cancer cells. Overall, the data obtained showed the great potential of this MSN-based nanoplatform to be applied in combined therapeutic strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Rosemeyre Cordeiro
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniel Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal
| | - Daniela Santo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
4
|
Nguyen CT, Chow SKK, Nguyen HN, Liu T, Walls A, Withey S, Liebig P, Mueller M, Thierry B, Yang CT, Huang CJ. Formation of Zwitterionic and Self-Healable Hydrogels via Amino-yne Click Chemistry for Development of Cellular Scaffold and Tumor Spheroid Phantom for MRI. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36157-36167. [PMID: 38973633 PMCID: PMC11261563 DOI: 10.1021/acsami.4c06917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
In situ-forming biocompatible hydrogels have great potential in various medical applications. Here, we introduce a pH-responsive, self-healable, and biocompatible hydrogel for cell scaffolds and the development of a tumor spheroid phantom for magnetic resonance imaging. The hydrogel (pMAD) was synthesized via amino-yne click chemistry between poly(2-methacryloyloxyethyl phosphorylcholine-co-2-aminoethylmethacrylamide) and dialkyne polyethylene glycol. Rheology analysis, compressive mechanical testing, and gravimetric analysis were employed to investigate the gelation time, mechanical properties, equilibrium swelling, and degradability of pMAD hydrogels. The reversible enamine and imine bond mechanisms leading to the sol-to-gel transition in acidic conditions (pH ≤ 5) were observed. The pMAD hydrogel demonstrated potential as a cellular scaffold, exhibiting high viability and NIH-3T3 fibroblast cell encapsulation under mild conditions (37 °C, pH 7.4). Additionally, the pMAD hydrogel also demonstrated the capability for in vitro magnetic resonance imaging of glioblastoma tumor spheroids based on the chemical exchange saturation transfer effect. Given its advantages, the pMAD hydrogel emerges as a promising material for diverse biomedical applications, including cell carriers, bioimaging, and therapeutic agent delivery.
Collapse
Affiliation(s)
- Cao Tuong
Vi Nguyen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Steven Kwok Keung Chow
- Clinical
Research and Imaging Centre, South Australian
Health and Medical Research Institute, Adelaide 5001, Australia
| | - Hoang Nam Nguyen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Tesi Liu
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Angela Walls
- Clinical
Research and Imaging Centre, South Australian
Health and Medical Research Institute, Adelaide 5001, Australia
| | | | | | - Marco Mueller
- Advanced
Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne 1000, Switzerland
| | - Benjamin Thierry
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chih-Tsung Yang
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chun-Jen Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
| |
Collapse
|
5
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
6
|
Santo D, Mendonça PV, Serra AC, Coelho JFJ, Faneca H. Targeted downregulation of MYC mediated by a highly efficient lactobionic acid-based glycoplex to enhance chemosensitivity in human hepatocellular carcinoma cells. Int J Pharm 2023; 637:122865. [PMID: 36940837 DOI: 10.1016/j.ijpharm.2023.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
The chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF). A library of tailor-made cationic glycopolymers, based on poly(2-aminoethyl methacrylate hydrochloride) (PAMA) and poly(2-lactobionamidoethyl methacrylate) (PLAMA) were synthesized by a straightforward activators regenerated by electron transfer atom transfer radical polymerization. The nanocarriers prepared with PAMA114-co-PLAMA20 glycopolymer were the most efficient for gene delivery. These glycoplexes specifically bound to the asialoglycoprotein receptor and were internalized through the clathrin-coated pit endocytic pathway. c-MYC expression was significantly downregulated by MYC short-hairpin RNA (MYC shRNA), resulting in efficient inhibition of tumor cells proliferation and a high levels apoptosis in 2D and 3D HCC-tumor models. Moreover, c-MYC silencing increased the sensitivity of HCC cells to SF (IC50 for MYC shRNA+ SF 1.9 μM compared to 6.9 μM for control shRNA + SF). Overall, the data obtained demonstrated the great potential of PAMA114-co-PLAMA20/MYC shRNA nanosystems combined with low doses of SF for the treatment of HCC.
Collapse
Affiliation(s)
- Daniela Santo
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Patrícia V Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal
| | - Arménio C Serra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal
| | - Jorge F J Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal.
| |
Collapse
|
7
|
Santo D, Cordeiro RA, Mendonça P, Serra A, Coelho JFJ, Faneca H. Glycopolymers Mediate Suicide Gene Therapy in ASGPR-Expressing Hepatocellular Carcinoma Cells in Tandem with Docetaxel. Biomacromolecules 2023; 24:1274-1286. [PMID: 36780314 PMCID: PMC10015461 DOI: 10.1021/acs.biomac.2c01329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cationic glycopolymers stand out as gene delivery nanosystems due to their inherent biocompatibility and high binding affinity to the asialoglycoprotein receptor (ASGPR), a target receptor overexpressed in hepatocellular carcinoma (HCC) cells. However, their synthesis procedure remains laborious and complex, with problems of solubilization and the need for protection/deprotection steps. Here, a mini-library of well-defined poly(2-aminoethyl methacrylate hydrochloride-co-poly(2-lactobionamidoethyl methacrylate) (PAMA-co-PLAMA) glycopolymers was synthesized by activators regenerated by electron transfer (ARGET) ATRP to develop an efficient gene delivery nanosystem. The glycoplexes generated had suitable physicochemical properties and showed high ASGPR specificity and high transfection efficiency. Moreover, the HSV-TK/GCV suicide gene therapy strategy, mediated by PAMA144-co-PLAMA19-based nanocarriers, resulted in high antitumor activity in 2D and 3D culture models of HCC, which was significantly enhanced by the combination with small amounts of docetaxel. Overall, our results demonstrated the potential of primary-amine polymethacrylate-containing-glycopolymers as HCC-targeted suicide gene delivery nanosystems and highlight the importance of combined strategies for HCC treatment.
Collapse
Affiliation(s)
- Daniela Santo
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
| | - Rosemeyre A. Cordeiro
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
| | - Patrícia
V. Mendonça
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Arménio
C. Serra
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Jorge F. J. Coelho
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- Associação
para a Inovação e Desenvolvimento Em Ciência
e Tecnologia, IPN—Instituto Pedro
Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
- . Phone: +351-239-820-190. Fax: +351- 239-853-607
| |
Collapse
|
8
|
Correia JS, Mirón-Barroso S, Hutchings C, Ottaviani S, Somuncuoğlu B, Castellano L, Porter AE, Krell J, Georgiou TK. How does the polymer architecture and position of cationic charges affect cell viability? Polym Chem 2023; 14:303-317. [PMID: 36760606 PMCID: PMC9846193 DOI: 10.1039/d2py01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Silvia Ottaviani
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent UniversityNottingham NG11 8NSUK,Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK
| | | | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK,School of Life Sciences, John Maynard Smith Building, University of SussexBrightonUK
| | | | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College LondonUK
| | | |
Collapse
|
9
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
10
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
11
|
Cordeiro RA, Mendonça PV, Coelho J, Faneca H. Engineering silica-polymer hybrid nanosystems for dual drug and gene delivery. BIOMATERIALS ADVANCES 2022; 135:212742. [PMID: 35929215 DOI: 10.1016/j.bioadv.2022.212742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/15/2023]
Abstract
In recent years, it has been shown that a combination of different antitumour strategies involving distinct therapeutic agents, such as chemical compounds and genetic material, could result in an effective therapeutic activity that is much higher than that obtained by conventionally used individual approaches. Therefore, the main goal of this work was to develop a new hybrid nanosystem based on mesoporous silica nanoparticles and polymers to efficiently transport and deliver drug and plasmid DNA into cancer cells. Moreover, its potential to mediate a combinatorial antitumour strategy involving epirubicin and herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy was evaluated. For this purpose, various cationic polymers were assessed, including poly(β-amino ester) homopolymer, gelatine type A, gelatine type B, and poly(ethylene glycol)-b-poly(2-aminoethyl methacrylate hydrochloride) block copolymer. The obtained results show that using different polymers leads to nanosystems with different physicochemical properties and, consequently, different biological activities. The best formulation was obtained for hybrid nanosystems coated with PEG-b-PAMA. They demonstrated the ability to cotransport and codeliver an anticancer drug and plasmid DNA and effectively mediate the combined antitumour strategy in 2D and 3D tumour cell culture models. In summary, we developed a novel silica- and polymer-based nanosystem able to mediate a dual chemotherapeutic and suicide gene therapy strategy with a much higher therapeutic effect than that obtained through the use of individual approaches, showing its potential for cancer treatment.
Collapse
Affiliation(s)
- Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Patrícia V Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Kalinova R, Valchanova M, Dimitrov I, Turmanova S, Ugrinova I, Petrova M, Vlahova Z, Rangelov S. Functional Polyglycidol-Based Block Copolymers for DNA Complexation. Int J Mol Sci 2021; 22:9606. [PMID: 34502513 PMCID: PMC8431755 DOI: 10.3390/ijms22179606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Gene therapy is an attractive therapeutic method for the treatment of genetic disorders for which the efficient delivery of nucleic acids into a target cell is critical. The present study is aimed at evaluating the potential of copolymers based on linear polyglycidol to act as carriers of nucleic acids. Functional copolymers with linear polyglycidol as a non-ionic hydrophilic block and a second block bearing amine hydrochloride pendant groups were prepared using previously synthesized poly(allyl glycidyl ether)-b-polyglycidol block copolymers as precursors. The amine functionalities were introduced via highly efficient radical addition of 2-aminoethanethiol hydrochloride to the alkene side groups. The modified copolymers formed loose aggregates with strongly positive surface charge in aqueous media, stabilized by the presence of dodecyl residues at the end of the copolymer structures and the hydrogen-bonding interactions in polyglycidol segments. The copolymer aggregates were able to condense DNA into stable and compact nanosized polyplex particles through electrostatic interactions. The copolymers and the corresponding polyplexes showed low to moderate cytotoxicity on a panel of human cancer cell lines. The cell internalization evaluation demonstrated the capability of the polyplexes to successfully deliver DNA into the cancer cells.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Miroslava Valchanova
- Department of Material Science and Technology, University “Prof. Assen Zlatarov”, 8010 Burgas, Bulgaria; (M.V.); (S.T.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Sevdalina Turmanova
- Department of Material Science and Technology, University “Prof. Assen Zlatarov”, 8010 Burgas, Bulgaria; (M.V.); (S.T.)
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (Z.V.)
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (Z.V.)
| | - Zlatina Vlahova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (Z.V.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
13
|
Sasaki H. Development of Multi-functional Nanoparticles for Clinical Application to Gene and Nucleic Acid Medicines. Biol Pharm Bull 2021; 43:1147-1153. [PMID: 32741935 DOI: 10.1248/bpb.b20-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene and nucleic medicines have recently gained attention as novel drugs with the advancement of molecular biology and genetics; however, they have low bioavailability and low target delivery due to their low stability and poor membrane permeability. Therefore, the development of an effective drug delivery system (DDS) is necessary for the practical use of gene and nucleic acid medicines; however, despite considerable research, both safety and efficiency remain poor. Furthermore, the healthcare needs are not met by traditional DDS. Therefore, we developed an effective multi-functional DDS, which is constructed using materials that are safe for human consumption. This DDS involves several ternary complexes as novel gene delivery carriers constructed by coating the cationic complex of the gene and nucleic acid medicines as well as the biodegradable cationic polymer with a biocompatible anionic polymer. Early implementation of the ternary complex in clinical studies is expected due to their efficacy and safety. Furthermore, these complexes may be prepared using large-scale manufacturing. In addition, personalized DDS may be prepared according to the patient's disease stage, which is useful for advanced therapy.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| |
Collapse
|
14
|
Wang Z, Sun J, Li M, Luo T, Shen Y, Cao A, Sheng R. Natural steroid-based cationic copolymers cholesterol/diosgenin- r-PDMAEMAs and their pDNA nanoplexes: impact of steroid structures and hydrophobic/hydrophilic ratios on pDNA delivery. RSC Adv 2021; 11:19450-19460. [PMID: 35479247 PMCID: PMC9033666 DOI: 10.1039/d1ra00223f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Using natural-based lipids to construct biocompatible, controllable and efficient nanocarriers and elucidating their structure-function relationships, was regarded as an important area for creating sustainable biomaterials. Herein, we utilized two natural steroids: cholesterol and diosgenin (bearing different hydrophobic tails) as the building blocks, to synthesize a series of natural steroid-based cationic random copolymers PMA6Chol-r-PDMAEMA and PMA6Dios-r-PDMAEMA via RAFT polymerization. The results demonstrated that the steroid-r-PDMAEMA copolymers could efficiently bind pDNA (N/P < 3.0) and then form near-spherical shape (142-449 nm) and positively-charged (+11.5 to +19.6 mV) nanoparticles. The in vitro cytotoxicity and gene transfection efficiency greatly depend on the steroid hydrophobic tail structures and steroid/PDMAEMA block ratios. Optimum transfection efficiency of the (Chol-P1/pDNA and Dios-P3/pDNA) nanoplexes could reach to 18.1-31.2% of the PEI-25K/pDNA complex. Moreover, all of the steroid-r-PDMAEMA/Cy3-pDNA nanoplexes have an obvious "lysosome localization" effect, indicating the steroid structures do not remarkably influence the intracellular localization behaviors of these nanoplexes.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jingjing Sun
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mingrui Li
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yulin Shen
- School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ruilong Sheng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira Campus da Penteada Funchal Madeira 9000-390 Portugal
| |
Collapse
|
15
|
Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021; 597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
The decoding of the human genome revolutionized the understanding of how genetics influence the interplay between health and disease, in a multidisciplinary perspective. Thus, the development of exogenous nucleic acids-based therapies has increased to overcome hereditary or acquired genetic-associated diseases. Gene drug delivery using non-viral systems, for instance micelleplexes, have been recognized as promising options for gene-target therapies. Micelleplexes are core-shell structures, at a nanometric scale, designed using amphiphilic block copolymers. These can self-assemble in an aqueous medium, leading to the formation of a hydrophilic and positively charged corona - that can transport nucleic acids, - and a hydrophobic core - which can transport poor water-soluble drugs. However, the performance of these types of carriers usually is hindered by several in vivo barriers. Fortunately, due to a significant amount of research, strategies to overcome these shortcomings emerged. With a wide range of structural features, good stability against proteolytic degradation, affordable characteristic, easy synthesis, low immunogenicity, among other advantages, peptides have increasingly gained popularity as target ligands for non-viral carriers. Hence, this review addresses the use of peptides with micelleplexes illustrating, through the analysis of in vitro and in vivo studies, the potential and future perspectives of this combination.
Collapse
|
16
|
Chen L, Wang S, Zhang Y, Li Y, Ge X, Li G, Wang L. N-Hydroxyphthalimide catalyzed hydrazination of polyethylene glycol. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
18
|
Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020; 12:E233. [PMID: 32151052 PMCID: PMC7150812 DOI: 10.3390/pharmaceutics12030233] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
The proposal of gene therapy to tackle cancer development has been instrumental for the development of novel approaches and strategies to fight this disease, but the efficacy of the proposed strategies has still fallen short of delivering the full potential of gene therapy in the clinic. Despite the plethora of gene modulation approaches, e.g., gene silencing, antisense therapy, RNA interference, gene and genome editing, finding a way to efficiently deliver these effectors to the desired cell and tissue has been a challenge. Nanomedicine has put forward several innovative platforms to overcome this obstacle. Most of these platforms rely on the application of nanoscale structures, with particular focus on nanoparticles. Herein, we review the current trends on the use of nanoparticles designed for cancer gene therapy, including inorganic, organic, or biological (e.g., exosomes) variants, in clinical development and their progress towards clinical applications.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. del Conocimiento s/n. 18071 Armilla, Granada, Spain
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| |
Collapse
|