1
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Taher WM, Abdulameer SJ, Abosaooda M, Fadhil AA. Peptide-Based Therapeutics in Cancer Therapy. Mol Biotechnol 2024; 66:2679-2696. [PMID: 37768503 DOI: 10.1007/s12033-023-00873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Lubna R Al-Ameer
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Zhao Y, Cui C, Fan G, Shi H. Stimuli-triggered Self-Assembly of Gold Nanoparticles: Recent Advances in Fabrication and Biomedical Applications. Chem Asian J 2024; 19:e202400015. [PMID: 38403853 DOI: 10.1002/asia.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Gold nanoparticles have been widely used in engineering, material chemistry, and biomedical applications owing to their ease of synthesis and functionalization, localized surface plasmon resonance (LSPR), great chemical stability, excellent biocompatibility, tunable optical and electronic property. In recent years, the decoration and modification of gold nanoparticles with small molecules, ligands, surfactants, peptides, DNA/RNA, and proteins have been systematically studied. In this review, we summarize the recent approaches on stimuli-triggered self-assembly of gold nanoparticles and introduce the breakthrough of gold nanoparticles in disease diagnosis and treatment. Finally, we discuss the current challenge and future prospective of stimuli-responsive gold nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Bera A, Nepalia A, Upadhyay A, Kumar Saini D, Chakravarty AR. Biotin and boron-dipyrromethene-tagged platinum(IV) prodrug for cellular imaging and mito-targeted photocytotoxicity in red light. Dalton Trans 2023; 52:13339-13350. [PMID: 37671587 DOI: 10.1039/d3dt01796f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A platinum(IV) prodrug, cis,cis,trans-[Pt(NH3)2Cl2(biotin)(L)] (1), derived from cisplatin, where HL is the PEGylated red-light active boron-dipyrromethene (BODIPY) ligand, was synthesized, characterized and its photocytotoxicity evaluated. The complex showed a near-IR absorption band at 653 nm (ε ∼9.19 × 104 M-1 cm-1) in dimethyl sulfoxide and Dulbecco's phosphate-buffered saline (1 : 1 v/v) at pH 7.2. When excited at 630 nm, it showed an emission band at 677 nm in DMSO with a fluorescence quantum yield of 0.13. The 1,3-diphenylisobenzofuran titration experiment gave a singlet oxygen quantum yield (ΦΔ) of ∼0.32. A mechanistic DNA photocleavage study revealed singlet oxygen as the reactive oxygen species (ROS). The complex with biotin and PEGylated-distyryl-BODIPY showed significantly higher cellular uptake in A549 cancer cells as compared to non-cancerous Beas-2B cells from flow cytometry, indicating selectivity towards cancer cells. A dichlorodihydrofluorescein diacetate assay showed cellular ROS generation. Confocal images revealed predominant internalization in the mitochondria. The prodrug showed remarkable photodynamic therapy (PDT) activity in cancerous A549 and multidrug-resistant MDA-MB-231 cells with a high photocytotoxicity index value (half-maximal inhibitory concentration (IC50): 0.61-1.54 μM in red light), while being non-toxic in the dark. The chemo-PDT activity was significantly less in non-tumorigenic lung epithelial cells (Beas-2B). The prodrug effectively triggered cellular apoptosis, which was confirmed by the Annexin V-FITC/propidium iodide assay, and the alteration of the mitochondrial membrane potential was substantiated by the JC-1 dye assay. The β-tubulin immunofluorescence assay confirmed that incubating the cells with a light-treated complex resulted in the rapture of the cytoskeletal structure and the formation of apoptotic bodies. The results demonstrate that the prodrug triggered apoptosis via DNA damage, a reduction in mitochondrial function and disruption of the cytoskeletal framework.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Amrita Nepalia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
5
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
6
|
Marciano Y, del Solar V, Nayeem N, Dave D, Son J, Contel M, Ulijn RV. Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. J Am Chem Soc 2023; 145:234-246. [PMID: 36542079 PMCID: PMC10720394 DOI: 10.1021/jacs.2c09820] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the use of amphiphilic, protease-cleavable peptides as encapsulation moieties for hydrophobic metallodrugs, in order to enhance their bioavailability and consequent activity. Two hydrophobic, gold-containing anticancer agents varying in aromatic ligand distribution (Au(I)-N-heterocyclic carbene compounds 1 and 2) were investigated. These were encapsulated into amphiphilic decapeptides that form soluble filamentous structures with hydrophobic cores, varying supramolecular packing arrangements and surface charge. Peptide sequence strongly dictates the supramolecular packing within the aromatic core, which in turn dictates drug loading. Anionic peptide filaments can effectively load 1, and to a lesser extent 2, while their cationic counterparts could not, collectively demonstrating that loading efficiency is dictated by both aromatic and electrostatic (mis)matching between drug and peptide. Peptide nanofilaments were nontoxic to cancerous and noncancerous cells. By contrast, those loaded with 1 and 2 displayed enhanced cytotoxicity in comparison to 1 and 2 alone, when exposed to Caki-1 and MDA-MB-231 cancerous cell lines, while no cytotoxicity was observed in noncancerous lung fibroblasts, IMR-90. We propose that the enhanced in vitro activity results from the enhanced proteolytic activity in the vicinity of the cancer cells, thereby breaking the filaments into drug-bound peptide fragments that are taken up by these cells, resulting in enhanced cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Yaron Marciano
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Virginia del Solar
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Nazia Nayeem
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Dhwanit Dave
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jiye Son
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Rein V. Ulijn
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Hou M, Ye M, Liu L, Xu M, Liu H, Zhang H, Li Y, Xu Z, Li B. Azide-Locked Prodrug Co-Assembly into Nanoparticles with Indocyanine Green for Chemophotothermal Therapy. Mol Pharm 2022; 19:3279-3287. [DOI: 10.1021/acs.molpharmaceut.2c00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meili Hou
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, P. R. China
| | - Mengjie Ye
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, P. R. China
| | - Mingchuan Xu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, P. R. China
| | - Hongmei Liu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Hengbo Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, P. R. China
| |
Collapse
|
8
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Mekseriwattana W, Guardia P, Herrero BT, de la Fuente JM, Kuhakarn C, Roig A, Katewongsa KP. Riboflavin-citrate conjugate multicore SPIONs with enhanced magnetic responses and cellular uptake in breast cancer cells. NANOSCALE ADVANCES 2022; 4:1988-1998. [PMID: 36133415 PMCID: PMC9419765 DOI: 10.1039/d2na00015f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 05/05/2023]
Abstract
Breast cancer accounts for up to 10% of the newly diagnosed cancer cases worldwide, making it the most common cancer found in women. The use of superparamagnetic iron oxide nanoparticles (SPIONs) has been beneficial in the advancement of contrast agents and magnetic hyperthermia (MH) for the diagnosis and treatment of cancers. To achieve delivery of SPIONs to cancer cells, surface functionalization with specific ligands are required. Riboflavin carrier protein (RCP) has been identified as an alternative target for breast cancer cells. Here, we report a novel riboflavin (Rf)-based ligand that provides SPIONs with enhanced colloidal stability and high uptake potential in breast cancer cells. This is achieved by synthesizing an Rf-citrate ligand. The ligand was tested in a multicore SPION system, and affinity to RCP was assessed by isothermal titration calorimetry which showed a specific, entropy-driven binding. MRI and MH responses of the coated Rf-SPIONs were tested to evaluate the suitability of this system as a theranostic platform. Finally, interaction of the Rf-SPIONs with breast cancer cells was evaluated by in vitro cellular uptake in MCF-7 breast cancer cells. The overall characterization of the Rf-SPIONs highlighted the excellent performance of this platform for theranostic applications in breast cancer.
Collapse
Affiliation(s)
- Wid Mekseriwattana
- School of Materials Science and Innovation, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB Bellaterra 08193 Spain
| | - Pablo Guardia
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB Bellaterra 08193 Spain
| | - Beatriz Torres Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) 50018 Zaragoza Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) 50018 Zaragoza Spain
| | - Chutima Kuhakarn
- Department of Chemistry, Center of Exellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB Bellaterra 08193 Spain
| | - Kanlaya Prapainop Katewongsa
- School of Materials Science and Innovation, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
10
|
Abás E, Bellés A, Rodríguez-Diéguez A, Laguna M, Grasa L. Selective cytotoxicity of cyclometalated gold(III) complexes on Caco-2 cells is mediated by G2/M cell cycle arrest. Metallomics 2021; 13:6296427. [PMID: 34114030 DOI: 10.1093/mtomcs/mfab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
New cyclometalated gold(III) complexes with a general structure [Au(C^N)(SR)2] or [Au(C^N)Cl(SR)], where C^N is a biphenyl ligand such as 2-(p-tolyl)pyridinate (tpy), 2-phenylpyridinate (ppy) and 2-benzylpyridinate (bzp) (SR = Spym, S(Me)2pym, 2-thiouracil (2-TU) and thiourea), and also with ethynyl moieties of the type [Au(C^N)(C≡C-Ar)2] (Ar = p-toluene and 2-pyridine) have been synthesized. All of them have been characterized, including X-ray studies of complex [Au(bzp)Cl(Spym)], and these studies have permitted to elucidate that leaving chloride ligand is trans located to CAr atom. After the full characterization, physicochemical properties were measured by evaluating drug-like water solubility and cell permeability (partition coefficient). All these experiments pointed that our complexes present adequate properties to be used as anticancer drugs. Although not all the complexes showed antiproliferative effects on Caco-2 cells, those that did were more cytotoxic than cisplatin; and complex [Au(tpy)Cl(2-TU)] is even more active than auranofin. In addition to this effectiveness, no evidence of cytotoxic effects was observed on considered normal cells (with the exception of [Au(bzp)Cl(2-TU)]. Further action mechanisms studies were performed using these selective complexes, showing cell cycle arrest on the G2/M phase, a proapoptotic behaviour and also the modification of some genes involved in tumorigenesis. Thus, as a result of this investigation, we present a new family of 17 cyclometalated complexes, 6 of them being selective and possible candidates to be used against colon cancer.
Collapse
Affiliation(s)
- Elisa Abás
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Plaza S. Francisco s/n, 50009, Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Mariano Laguna
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Plaza S. Francisco s/n, 50009, Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
11
|
Machado JF, Correia JDG, Morais TS. Emerging Molecular Receptors for the Specific-Target Delivery of Ruthenium and Gold Complexes into Cancer Cells. Molecules 2021; 26:3153. [PMID: 34070457 PMCID: PMC8197480 DOI: 10.3390/molecules26113153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S. Morais
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
12
|
Zhou XQ, Carbo-Bague I, Siegler MA, Hilgendorf J, Basu U, Ott I, Liu R, Zhang L, Ramu V, IJzerman AP, Bonnet S. Rollover Cyclometalation vs Nitrogen Coordination in Tetrapyridyl Anticancer Gold(III) Complexes: Effect on Protein Interaction and Toxicity. JACS AU 2021; 1:380-395. [PMID: 34056633 PMCID: PMC8154207 DOI: 10.1021/jacsau.0c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 05/05/2023]
Abstract
In this work, a pair of gold(III) complexes derived from the analogous tetrapyridyl ligands H2biqbpy1 and H2biqbpy2 was prepared: the rollover, bis-cyclometalated [Au(biqbpy1)Cl ([1]Cl) and its isomer [Au(biqbpy2)Cl ([2]Cl). In [1]+, two pyridyl rings coordinate to the metal via a Au-C bond (C∧N∧N∧C coordination) and the two noncoordinated amine bridges of the ligand remain protonated, while in [2]+ all four pyridyl rings of the ligand coordinate to the metal via a Au-N bond (N∧N∧N∧N coordination), but both amine bridges are deprotonated. As a result, both complexes are monocationic, which allowed comparison of the sole effect of cyclometalation on the chemistry, protein interaction, and anticancer properties of the gold(III) compounds. Due to their identical monocationic charge and similar molecular shape, both complexes [1]Cl and [2]Cl displaced reference radioligand [3H]dofetilide equally well from cell membranes expressing the Kv11.1 (hERG) potassium channel, and more so than the tetrapyridyl ligands H2biqbpy1 and H2biqbpy2. By contrast, cyclometalation rendered [1]Cl coordinatively stable in the presence of biological thiols, while [2]Cl was reduced by a millimolar concentration of glutathione into metastable Au(I) species releasing the free ligand H2biqbpy2 and TrxR-inhibiting Au+ ions. The redox stability of [1]Cl dramatically decreased its thioredoxin reductase (TrxR) inhibition properties, compared to [2]Cl. On the other hand, unlike [2]Cl, [1]Cl aggregated into nanoparticles in FCS-containing medium, which resulted in much more efficient gold cellular uptake. [1]Cl had much more selective anticancer properties than [2]Cl and cisplatin, as it was almost 10 times more cytotoxic to human cancer cells (A549, A431, A375, and MCF7) than to noncancerous cells (MRC5). Mechanistic studies highlight the strikingly different mode of action of the two compounds: while for [1]Cl high gold cellular uptake, nuclear DNA damage, and interaction with hERG may contribute to cell killing, for [2]Cl extracellular reduction released TrxR-inhibiting Au+ ions that were taken up in minute amounts in the cytosol, and a toxic tetrapyridyl ligand also capable of binding to hERG. These results demonstrate that bis-cyclometalation is an appealing method to improve the redox stability of Au(III) compounds and to develop gold-based cytotoxic compounds that do not rely on TrxR inhibition to kill cancer cells.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Imma Carbo-Bague
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jonathan Hilgendorf
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Uttara Basu
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Rongfang Liu
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Liyan Zhang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Vadde Ramu
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
13
|
Akrami M, Samimi S, Alipour M, Bardania H, Ramezanpour S, Najafi N, Hosseinkhani S, Kamankesh M, Haririan I, Hassanshahi F. Potential anticancer activity of a new pro-apoptotic peptide-thioctic acid gold nanoparticle platform. NANOTECHNOLOGY 2021; 32:145101. [PMID: 33321485 DOI: 10.1088/1361-6528/abd3cb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeted nanoparticle platforms designed to induce cell death by apoptosis can bypass the resistance mechanisms of cancer cells. With this in mind we have constructed a new cancer-targeting peptide-functionalized nanoparticle using gold nanoparticles (AuNPs) and a thioctic acid-DMPGTVLP peptide (TA-peptide) conjugate. Morphological analysis of the nanoparticles by transmission electron microscopy showed average diameters of about 3.52 nm and 26.2 nm for the AuNP core and shell, respectively. Strong affinity toward the nucleolin receptors of breast cancer cell lines MCF-7 and T47D was observed for the TA-peptide gold nanoparticles (TAP@AuNPs) based on IC50 values. Furthermore, the nanoparticles showed excellent hemocompatibility. Quantitative results of atomic absorption showed improved uptake of TAP@AuNPs. Treatment of the cells with TAP@AuNPS resulted in greater release of cytochrome c following caspase-3/7 activation compared with free TA-peptide. The cytosolic level of adenosine triphosphate for TAP@AuNPs was higher than in controls. Higher anti-tumor efficiency was observed for TAP@AuNPs than TA-peptide compared with phosphate-buffered saline after intratumoral injection in tumor-bearing mice. It can be concluded that the design and development of a receptor-specific peptide-AuNP platform will be valuable for theranostic applications in cancer nanomedicine.
Collapse
Affiliation(s)
- Mohammad Akrami
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sorour Ramezanpour
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Niayesh Najafi
- Department of Biological Sciences, University of California, Irvine, United States of America
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kamankesh
- Department of Polymer chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hassanshahi
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Abás E, Gómez-Bachiller M, Colom E, Pardina E, Rodríguez-Diéguez A, Grasa L, Laguna M. Cyclometallated gold(III) complexes against colon cancer. X-ray structure of [Au(C,NPhenylpyridine)(OAc)2]. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Śmiłowicz D, Metzler-Nolte N. Bioconjugates of Co(III) complexes with Schiff base ligands and cell penetrating peptides: Solid phase synthesis, characterization and antiproliferative activity. J Inorg Biochem 2020; 206:111041. [PMID: 32120161 DOI: 10.1016/j.jinorgbio.2020.111041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
Abstract
In this work we synthesized a chelating Schiff base by a single condensation of salicylaldehyde with 3,4-diamino benzoic acid (1). This ligand was used further for complexation to CoCl2·6H2O under nitrogen. In the next step, three six-coordinate Co(III) complexes were synthesized by coordinating this complex with imidazole (2), 2-methyimidazole (3) and N-Boc-l-histidine methyl ester (4) (Boc: tert.-butoxycarbonyl) in axial positions with simultaneous oxidation of Co(II) to Co(III) under ambient environment. All Co(III) complexes were characterized by multinuclear NMR spectroscopy (1H, 13C and 59Co NMR), FT-IR, mass spectrometry and HPLC. The Co(III) complexes were conjugated to three different cell penetrating peptides: FFFF (P1), RRRRRRRRRGAL (P2) and FFFFRRRRRRRRRGAL (P3). Standard solid-phase peptide chemistry was used for the synthesis of cell penetrating peptides. Coupling of N-terminal peptides with the cobalt complexes, possessing a carboxylic group on the tetradentate Schiff base ligand, afforded Co(III)-peptide bioconjugates, which were purified by semi-preparative HPLC and characterized by analytical HPLC and mass spectrometry. The antiproliferative activity of the synthesized compounds was studied against different human tumour cell lines: lung cancer A549, liver cancer HepG2 and normal human fibroblasts GM5657T, in comparison with the activity of cisplatin as a reference drug. The bioconjugate 21 containing the Co complex 4 and the combined phenylalanine and polyarginine cell penetrating sequence P3 shows better activity against the liver cancer line HepG2 than the parent Co(III) complex 4.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|