1
|
Vercouillie J, Buron F, Sérrière S, Rodrigues N, Gulhan Z, Chartier A, Chicheri G, Marzag H, Oury A, Percina N, Bodard S, Ben Othman R, Busson J, Suzenet F, Guilloteau D, Marchivie M, Emond P, Routier S, Chalon S. Development and preclinical evaluation of [18F]FBVM as a new potent PET tracer for vesicular acetylcholine transporter. Eur J Med Chem 2022; 244:114794. [DOI: 10.1016/j.ejmech.2022.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
|
2
|
Albin RL, Kanel P, van Laar T, van der Zee S, Roytman S, Koeppe RA, Scott PJH, Bohnen NI. No Dopamine Agonist Modulation of Brain [ 18F]FEOBV Binding in Parkinson's Disease. Mol Pharm 2022; 19:1176-1182. [PMID: 35289620 PMCID: PMC8983523 DOI: 10.1021/acs.molpharmaceut.1c00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) ligand targets the vesicular acetylcholine transporter. Recent [18F]FEOBV PET rodent studies suggest that regional brain [18F]FEOBV binding may be modulated by dopamine D2-like receptor agents. We examined associations of regional brain [18F]FEOBV PET binding in Parkinson's disease (PD) subjects without versus with dopamine D2-like receptor agonist drug treatment. PD subjects (n = 108; 84 males, 24 females; mean age 68.0 ± 7.6 [SD] years), mean disease duration of 6.0 ± 4.0 years, and mean Movement Disorder Society-revised Unified PD Rating Scale III 35.5 ± 14.2 completed [18F]FEOBV brain PET imaging. Thirty-eight subjects were taking dopamine D2-like agonists. Vesicular monoamine transporter type 2 [11C]dihydrotetrabenazine (DTBZ) PET was available in a subset of 54 patients. Subjects on dopamine D2-like agonists were younger, had a longer duration of disease, and were taking a higher levodopa equivalent dose (LED) compared to subjects not taking dopamine agonists. A group comparison between subjects with versus without dopamine D2-like agonist use did not yield significant differences in cortical, striatal, thalamic, or cerebellar gray matter [18F]FEOBV binding. Confounder analysis using age, duration of disease, LED, and striatal [11C]DTBZ binding also failed to show significant regional [18F]FEOBV binding differences between these two groups. Chronic D2-like dopamine agonist use in PD subjects is not associated with significant alterations of regional brain [18F]FEOBV binding.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States
| | - Prabesh Kanel
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Teus van Laar
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sygrid van der Zee
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert A Koeppe
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|