1
|
Zhao J, Li X, Ji D, Bae J. Extrusion-based 3D printing of soft active materials. Chem Commun (Camb) 2024; 60:7414-7426. [PMID: 38894652 DOI: 10.1039/d4cc01889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.
Collapse
Affiliation(s)
- Jiayu Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Xiao Li
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Donghwan Ji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Lin Z, Mikhael C, Dai C, Cho JH. Self-Assembly for Creating Vertically-Aligned Graphene Micro Helices with Monolayer Graphene as Chiral Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401451. [PMID: 38630988 DOI: 10.1002/adma.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Graphene's emergence enables creating chiral metamaterials in helical shapes for terahertz (THz) applications, overcoming material limitations. However, practical implementation remains theoretical due to fabrication challenges. This paper introduces a dual-component self-assembly technique that enables creating vertically-aligned continuous monolayer graphene helices at microscale with great flexibility and high controllability. This assembly process not only facilitates the creation of 3D microstructures, but also positions the 3D structures from a horizontal to a vertical orientation, achieving an aspect ratio (height/width) of ≈2700. As a result, an array of vertically-aligned graphene helices is formed, reaching up to 4 mm in height, which is equivalent to 4 million times the height of monolayer graphene. The benefit of these 3D chiral structures made from graphene is their capability to infinitely extend in height, interacting with light in ways that are not possible with traditional 2D layering methods. Such an impressive height elevates a level of interaction with light that far surpasses what is achievable with traditional 2D layering methods, resulting in a notable enhancement of optical chirality properties. This approach is applicable to various 2D materials, promising advancements in innovative research and diverse applications across fields.
Collapse
Affiliation(s)
- Zihao Lin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carol Mikhael
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Lin Z, Dai C, Cho JH. Realization of Curved Circular Nanotubes Using In Situ Monitored Self-Assembly. NANO LETTERS 2022; 22:2140-2146. [PMID: 35050632 DOI: 10.1021/acs.nanolett.1c04093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Curved fluidic channels with a circular cross-section play an important role in biology, chemistry, and medicine. However, in nanofluidics, a problem that is largely unsolved is the lack of an effective fabrication method for curved circular nanotubes (10-1000 nm). In this work, an electron-beam-induced self-assembly process was applied to achieve fine curved nanostructures for the realization of nanofluidic devices. The diameter of the tube could be precisely controlled by an atomic layer deposition process. Fluid transported through the nanochannels was verified and characterized using a dark-field microscope under an optical diffraction limit size. The fluid flow demonstrates that the liquid's evaporation (vapor diffusion) in the nanochannel generates compressed vapor, which pumps the liquid and pushes it forward, resulting in a directional flow behavior in the ∼100 nm radius of tubes. This phenomenon could provide a useful platform for the development of diverse nanofluidic devices.
Collapse
Affiliation(s)
- Zihao Lin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Yu Y, Lorenz P, Strobel C, Zajadacz J, Albert M, Zimmer K, Kirchner R. Plasmonic 3D Self-Folding Architectures via Vacuum Microforming. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105843. [PMID: 34874616 DOI: 10.1002/smll.202105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Indexed: 06/13/2023]
Abstract
3D self-folding microarchitectures have been studied enormously since the past decade, because of the potential of utilizing the third dimension to reach a new level of device integration. However, incorporating various functionalities is a great challenge, due to the limited folding force and choice of materials. In particular, self-folding microarchitectures with advanced optical properties have yet to be demonstrated. Here, a unique folding technique is developed, namely vacuum microforming, successfully demonstrating the self-folding of microcubes that can be completed within 30 ms, a few orders of magnitudes faster as compared to various established strategies reported so far. Simultaneously, a metal-insulator-metal (MIM) plasmonic nanostructure is fabricated, invoking strong gap plasmon to obtain a wide and robust angle-independent optical behavior and high environmental sensitivity that is close to the theoretical limit. It is successfully proven that such superb plasmonic properties are well preserved in 3D architectures throughout the folding process. The nanofabrication method together with the self-folding strategy not only provide the fastest folding process so far, compatible for high-volume fabrication, but also create new opportunities in integrating various functionalities, more specifically, optical properties for untethered optical sensing and identification.
Collapse
Affiliation(s)
- Ye Yu
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, Nöthnitzer Straße 64, 01187, Dresden, Germany
| | - Pierre Lorenz
- Department of Ultra-Precision Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Carsten Strobel
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, Nöthnitzer Straße 64, 01187, Dresden, Germany
| | - Joachim Zajadacz
- Department of Ultra-Precision Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Matthias Albert
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, Nöthnitzer Straße 64, 01187, Dresden, Germany
| | - Klaus Zimmer
- Department of Ultra-Precision Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Robert Kirchner
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, Nöthnitzer Straße 64, 01187, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
5
|
Dai C, Cho JH. Electron Beam Maneuvering of a Single Polymer Layer for Reversible 3D Self-Assembly. NANO LETTERS 2021; 21:2066-2073. [PMID: 33630613 DOI: 10.1021/acs.nanolett.0c04723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reversible self-assembly that allows materials to switch between structural configurations has triggered innovation in various applications, especially for reconfigurable devices and robotics. However, reversible motion with nanoscale controllability remains challenging. This paper introduces a reversible self-assembly using stress generated by electron irradiation triggered degradation (shrinkage) of a single polymer layer. The peak position of the absorbed energy along the depth of a polymer layer can be modified by tuning the electron energy; the peak absorption location controls the position of the shrinkage generating stress along the depth of the polymer layer. The stress gradient can shift between the top and bottom surface of the polymer by repeatedly tuning the irradiation location at the nanoscale and the electron beam voltage, resulting in reversible motion. This reversible self-assembly process paves the path for the innovation of small-scale machines and reconfigurable functional devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Dai C, Lin Z, Agarwal K, Mikhael C, Aich A, Gupta K, Cho JH. Self-Assembled 3D Nanosplit Rings for Plasmon-Enhanced Optofluidic Sensing. NANO LETTERS 2020; 20:6697-6705. [PMID: 32808792 DOI: 10.1021/acs.nanolett.0c02575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic sensors are commonly defined on two-dimensional (2D) surfaces with an enhanced electromagnetic field only near the surface, which requires precise positioning of the targeted molecules within hotspots. To address this challenge, we realize segmented nanocylinders that incorporate plasmonic (1-50 nm) gaps within three-dimensional (3D) nanostructures (nanocylinders) using electron irradiation triggered self-assembly. The 3D structures allow desired plasmonic patterns on their inner cylindrical walls forming the nanofluidic channels. The nanocylinders bridge nanoplasmonics and nanofluidics by achieving electromagnetic field enhancement and fluid confinement simultaneously. This hybrid system enables rapid diffusion of targeted species to the larger spatial hotspots in the 3D plasmonic structures, leading to enhanced interactions that contribute to a higher sensitivity. This concept has been demonstrated by characterizing an optical response of the 3D plasmonic nanostructures using surface-enhanced Raman spectroscopy (SERS), which shows enhancement over a 22 times higher intensity for hemoglobin fingerprints with nanocylinders compared to 2D nanostructures.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zihao Lin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kriti Agarwal
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carol Mikhael
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anupam Aich
- Hematology/Oncology Division, Department of Medicine, University of California, Irvine, California 92697, United States
| | - Kalpna Gupta
- Hematology/Oncology Division, Department of Medicine, University of California, Irvine, California 92697, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, United States
- SCIRE, Veterans Affairs Medical Center, Long Beach, California 90822, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|