1
|
Garcia JC, Wilson EA, Aggarwal D, Rajashekhar H, Vrushabendrakumar D, Shankar K. Analyte-dependent Rabi splitting in solid-state plexcitonic sensors based on plasmonic nanoislands strongly coupled to J-aggregates. NANOTECHNOLOGY 2024; 35:48LT02. [PMID: 39089288 DOI: 10.1088/1361-6528/ad6a1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 08/03/2024]
Abstract
A key challenge in the field of plexcitonic quantum devices is the fabrication of solid-state, device-friendly plexcitonic nanostructures using inexpensive and scalable techniques. Lithography-free, bottom-up nanofabrication methods have remained relatively unexplored within the context of plexcitonic coupling. In this work, a plexcitonic system consisting of thermally dewetted plasmonic gold nanoislands (AuNI) coated with a thin film of J-aggregates was investigated. Control over nanoisland size and morphology allowed for a range of plasmon resonances with variable detuning from the exciton. The extinction spectra of the hybrid AuNI/J-aggregate films display clear splitting into upper and lower hybrid resonances, while the dispersion curve shows anti-crossing behavior with an estimated Rabi splitting of 180 eV at zero detuning. As a proof of concept for quantum sensing, the AuNI/J-aggregate hybrid was demonstrated to behave as a plexcitonic sensor for hydrochloric acid vapor analyte. This work highlights the possibility of using thermally dewetted nanoparticles as a platform for high-quality, tunable, cost-effective, and scalable plexcitonic nanostructures for sensing devices and beyond.
Collapse
Affiliation(s)
- John Carlo Garcia
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Ethan Alex Wilson
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Dipesh Aggarwal
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Harshitha Rajashekhar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Damini Vrushabendrakumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| |
Collapse
|
2
|
He C, Liang K, Deng X, Liang X, Zhang J, Yu L. Triple Plexcitonic Nonreciprocity of Magnetochiral Plexcitons. NANO LETTERS 2024. [PMID: 39011986 DOI: 10.1021/acs.nanolett.4c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nonreciprocal quantum devices, allowing different transmission efficiencies of light-matter polaritons along opposite directions, are key technologies for modern photonics, yet their miniaturization and fine manipulation remain an open challenge. Here, we report on magnetochiral plexcitons dressed with geometric-time double asymmetry in compact nonreciprocal hybrid metamaterials, leading to triple plexcitonic nonreciprocity with flexible controllability. A general magnetically dressed plexcitonic Born-Kuhn model is developed to reveal the hybrid optical nature and dynamic energy evolution of magnetochiral plexcitons, demonstrating a plexcitonic nonreciprocal mechanism originating from the strong coupling among photon, electron, and spin degrees of freedom. Moreover, we introduce the temperature-controlled knob/switch for magnetochiral plexcitons, achieving precise magnetochiral control and nonreciprocal transmission in a given system. We expect this mechanism and approach to open up a new route for the integration and fine control of on-chip nonreciprocal quantum devices.
Collapse
Affiliation(s)
- Chengmao He
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Kun Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xuyan Deng
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xiongyu Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jiasen Zhang
- School of Physics, Peking University, Beijing, 100871, China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
3
|
Jia P, Shi H, Liu R, Yan X, Sun X. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers. OPTICS EXPRESS 2023; 31:44177-44189. [PMID: 38178495 DOI: 10.1364/oe.510133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Plasmonic tweezers break the diffraction limit and enable trap the deep-subwavelength particles. However, the innate scattering properties and the photothermal effect of metal nanoparticles pose challenges to their effective trapping and the non-damaging trapping of biomolecules. In this study, we investigate the enhanced trapping properties induced by strong coupling between localized surface plasmon resonances (LSPR) and excitons in plasmonic tweezers. The LSPR-exciton strong coupling exhibits an anticrossing behavior in dispersion curves with a markable Rabi splitting of 196 meV. Plasmonic trapping forces on excitons experience a significant increase within this strong coupling system due to higher longitudinal enhancement of electric field enhancement, which enables efficient particle trapping using lower laser power and minimizes ohmic heat generation. Moreover, leveraging strong coupling effects allows the successful trapping of a 50 nm Au particle coated with J-aggregates, overcoming previous limitations associated with scattering characteristics and smaller size that hindered effective metal nanoparticle manipulation. These findings open up new possibilities for the nondestructive trapping of biomolecules and metal nanoparticles across various applications.
Collapse
|
4
|
Liang K, Jin L, Deng X, Jiang P, Yu L. Fine-tuning biexcitons-plasmon coherent states in a single nanocavity. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3471-3480. [PMID: 39633855 PMCID: PMC11501157 DOI: 10.1515/nanoph-2023-0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2023] [Indexed: 12/07/2024]
Abstract
A tunable plexcitonic material that sustains multimode hybridization is highly desirable, which is vital for advanced quantum devices. However, the research about regulations of biexcitons-plasmon coherent states has rarely been reported. Here we apply single-nanoparticle scattering spectroscopy correlative with SEM imaging to identify biexcitons-plasmon interaction in a metal-semiconductor hybrid structure composed of a single Au@Ag nanoparticle, J-aggregates molecules and tungsten disulfide (WS2) monolayer. The mode competition within the localized plasmonic hotspots (∼240 nm3) is revealed by continuously regulating the J-aggregates spacer. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (137 meV and 124 meV) are obtained successfully. We establish experimentally that J-aggregates and WS2 monolayer are responsible for the middle polariton states, while plasmon rarely contributes. Further calculations show that plasmonic nanocavity enables coherent energy exchange with different excitons by providing a highly enhanced localized E-field. In addition, we find that the multimode coupling strengths can be efficiently tuned by changing the cavity morphology and environment temperature, where the tuning spectral accuracy can reach up to 1 nm. Our findings uncover the distinctive properties of biexcitons-plasmon polaritons, suggest an easily obtainable multiqubit states platform, and open up a new way to construct nanoscale photonic devices.
Collapse
Affiliation(s)
- Kun Liang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Lei Jin
- School of Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xuyan Deng
- School of Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ping Jiang
- School of Science Microelectronics and Data Science, Anhui University of Technology, Maanshan, China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
5
|
Xiong X, Clarke D, Lai Y, Bai P, Png CE, Wu L, Hess O. Substrate engineering of plasmonic nanocavity antenna modes. OPTICS EXPRESS 2023; 31:2345-2358. [PMID: 36785250 DOI: 10.1364/oe.476521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/25/2022] [Indexed: 06/18/2023]
Abstract
Plasmonic nanocavities have emerged as a promising platform for next-generation spectroscopy, sensing and photonic quantum information processing technologies, benefiting from a unique confluence of nanoscale compactness and integrability, ultrafast functionality and room-temperature viability. Harnessing their unprecedented optical field confinement and enhancement properties for such diverse application domains, however, demands continued innovation in cavity design and robust strategies for engineering their plasmonic mode characteristics, with the aim of optimizing spatial and spectral matching conditions for strong light-matter interaction involving embedded quantum emitters. Adopting the canonical gold bowtie nanoantenna, we show that the complex refractive index, n + ik, of the substrate material provides additional design flexibility in tailoring the properties of plasmonic nanocavity modes, including their resonance wavelengths, hotspot locations, intracavity field polarization and radiative decay rates. In particular, we predict that highly refractive (n ≥ 4) or highly absorptive (k ≥ 4) substrates provide two complementary approaches to engineering nanocavity modes that are especially desirable for coupling two-dimensional quantum materials, featuring namely an elevated hotspot with a dominantly in-plane polarized near-field, as well as a strongly radiative character. Our study elucidates the benefits and intricacies of a largely unexplored facet of nanocavity mode manipulation, beyond the widely practiced synthetic control over the cavity topology or physical dimensions, and paves the way for plasmonic cavity quantum electrodynamics with two-dimensional excitonic matter.
Collapse
|
6
|
Sáez-Blázquez R, Cuartero-González Á, Feist J, García-Vidal FJ, Fernández-Domínguez AI. Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities. NANO LETTERS 2022; 22:2365-2373. [PMID: 35285655 PMCID: PMC8949753 DOI: 10.1021/acs.nanolett.1c04872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigate the quantum-optical properties of the light emitted by a nanoparticle-on-mirror cavity filled with a single quantum emitter. Inspired by recent experiments, we model a dark-field setup and explore the photon statistics of the scattered light under grazing laser illumination. Exploiting analytical solutions to Maxwell's equations, we quantize the nanophotonic cavity fields and describe the formation of plasmon-exciton polaritons (or plexcitons) in the system. This way, we reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation that are more efficient than the resonant interaction between the emitter natural transition and the brightest optical mode. Specifically, we find three different sample configurations in which strongly antibunched light is produced. Finally, we illustrate the power of our approach by showing that the introduction of a second emitter in the platform can enhance photon correlations further.
Collapse
Affiliation(s)
- Rocío Sáez-Blázquez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Vienna
Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria
| | - Álvaro Cuartero-González
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Mechanical
Engineering Department, ICAI, Universidad
Pontificia Comillas, 28015 Madrid, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco J. García-Vidal
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Institute
of High Performance Computing, Agency for
Science, Technology, and Research (A*STAR), Singapore 138632, Singapore
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|