1
|
Bonato M, Galletta V, Chiaramello E, Fiocchi S, Parazzini M. Dual-modeling computational framework of magnetoelectric core-shell nanoparticles and nanochain for wireless peripheral nerve regeneration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 268:108862. [PMID: 40403534 DOI: 10.1016/j.cmpb.2025.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/10/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
OBJECTIVE This study introduces a novel dual-modeling computational framework to comprehensively analyze magnetoelectric CFO-BTO core-shell nanoparticles and nanochains for wireless peripheral nerve regeneration. Our approach covers both single-particle physics and tissue-level effects for wireless peripheral nerve regeneration applications, evaluating the capability to generate therapeutic electric fields (5-140 V/m). METHODS We developed a two-step computational strategy: first, a detailed multi-physics model characterizing individual nanostructure magnetoelectric coupling, incorporating experimental parameters from literature; second, a tissue-level model analyzing electric field distributions in both 2D in-vitro and 3D in-vivo configurations, with varying magnetic stimulations and nanochain concentrations (0.5-5 % w/v). RESULTS The magnetoelectric analysis revealed better performance in nanochains compared to single nanoparticles, with optimal results achieved using cylindrical shell geometry. The 3D in-vivo configurations demonstrated higher field values compared to 2D in-vitro configuration, with therapeutic levels achieved across significant tissue volumes at higher nanochain concentrations. CONCLUSION This computational analysis validates that magnetoelectric nanochains can generate therapeutically relevant electric fields for nerve regeneration through wireless magnetic stimulation. SIGNIFICANCE This study provides the first computational framework that quantitatively predicts electric field distributions from magnetoelectric nanostructures in neural tissue, providing essential design guidelines for optimizing wireless nerve regeneration therapies and accelerating their translation to clinical applications.
Collapse
Affiliation(s)
- Marta Bonato
- National Research Council (CNR), Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), Italy.
| | - Valentina Galletta
- National Research Council (CNR), Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), Italy; Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Emma Chiaramello
- National Research Council (CNR), Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), Italy
| | - Serena Fiocchi
- National Research Council (CNR), Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), Italy
| | - Marta Parazzini
- National Research Council (CNR), Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), Italy
| |
Collapse
|
2
|
Chernozem PV, Romashchenko AV, Solovieva OI, Ibraeva AZ, Nosov G, Koptsev DA, Lisitsyn SA, Surmeneva MA, Wagner DV, Gerasimov EY, Kazantsev SO, Lozhkomoev AS, Sukhorukov GB, Surmenev RA, Chernozem RV. The Effect of Various Surface Functionalizations of Core-Shell Nanoactuators on Magnetoelectrically Driven Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21614-21629. [PMID: 40162916 DOI: 10.1021/acsami.4c21337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Magnetoelectric (ME) nanoparticles (NPs) exhibit strong coupling between magnetic and electric properties, enabling wireless control of biological processes through electromagnetic stimulation, which paves the way for diverse biomedical applications. However, the surface functionalization of ME NPs and its impact on their structure, physical properties, and biological response remain largely unexplored. In this study, biocompatible citric acid (CA) and pectin (PEC) were employed to functionalize quasi-spherical ME core-shell NPs comprising a magnetic spinel MnFe2O4 core (∼23 nm) and a ferroelectric perovskite Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) shell (∼5 nm), synthesized using microwave-assisted hydrothermal processing. The surface functionalization led to the formation of covalent bonds between CA and metal ions of NPs via chelation. The surface functionalization with PEC increased ζ-potential values of ME NPs up to -46.2 ± 0.6 mV compared to CA (25.3 ± 1.0 mV). Both MFO@BCZT NPs with CA and PEC exhibited low coercivity values (69 ± 5 and 29 ± 2 Oe, respectively) with a pronounced specific saturation magnetization (6.1 ± 0.2 and 5.2 ± 0.2 emu/g, respectively). No effect of the BCZT shell with subsequent CA (746 ± 22 Oe) and PEC (754 ± 23 Oe) surface functionalizations on the anisotropy field of ME NPs was observed compared to the pristine MFO cores (754 ± 23 Oe). Both CA-/PEC-functionalized MFO@BCZT NPs exhibited ferroelectric behavior with robust piezoresponse (9.95 ± 1.36 and 10.24 ± 2.03 pm/V, respectively) and high ME response (81 × 104 and 80 × 104 mV·cm-1·Oe-1, respectively), comparable to the most frequently studied Co-based analogs. In vitro assays demonstrated the ability of the developed ME NPs to control calcium flux, which enables bidirectional regulation of cell proliferation. This work advances the development of efficient and biocompatible ME NPs with promising applications in the noninvasive and targeted stimulation of cell behavior.
Collapse
Affiliation(s)
| | - Alexander V Romashchenko
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- The Federal Research Center Institute of Cytology and Genetic, SB RAS, Novosibirsk 630090, Russia
- Life Improvement by Future Technology Center LLC (LIFT), Moscow 121205, Russia
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow 121205, Russia
| | - Olga I Solovieva
- The Federal Research Center Institute of Cytology and Genetic, SB RAS, Novosibirsk 630090, Russia
| | - Azhar Zh Ibraeva
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- The Federal Research Center Institute of Cytology and Genetic, SB RAS, Novosibirsk 630090, Russia
| | - Georgy Nosov
- Life Improvement by Future Technology Center LLC (LIFT), Moscow 121205, Russia
| | - Danila A Koptsev
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Sergey A Lisitsyn
- Life Improvement by Future Technology Center LLC (LIFT), Moscow 121205, Russia
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow 121205, Russia
| | - Maria A Surmeneva
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Dmitry V Wagner
- National Research Tomsk State University, Tomsk 634050, Russia
| | | | - Sergey O Kazantsev
- Institute of Strength Physics and Materials Science, SB RAS, Tomsk 634055, Russia
| | | | - Gleb B Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow 121205, Russia
| | - Roman A Surmenev
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman V Chernozem
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
3
|
Andre V, Abdel-Mottaleb M, Shotbolt M, Chen S, Ramezini Z, Zhang E, Conlan S, Telisman O, Liang P, Bryant JM, Chomko R, Khizroev S. Foundational insights for theranostic applications of magnetoelectric nanoparticles. NANOSCALE HORIZONS 2025; 10:699-718. [PMID: 39898755 PMCID: PMC11789716 DOI: 10.1039/d4nh00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Reviewing emerging biomedical applications of MagnetoElectric NanoParticles (MENPs), this paper presents basic physics considerations to help understand the possibility of future theranostic applications. Currently emerging applications include wireless non-surgical neural modulation and recording, functional brain mapping, high-specificity cell electroporation for targeted cancer therapies, targeted drug delivery, early screening and diagnostics, and others. Using an ab initio analysis, each application is discussed from the perspective of its fundamental limitations. Furthermore, the review identifies the most eminent challenges and offers potential engineering solutions on the pathway to implement each application and combine the therapeutic and diagnostic capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Victoria Andre
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | | | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Zeinab Ramezini
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Skye Conlan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Ozzie Telisman
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | | | - John M Bryant
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roman Chomko
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
- The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Shotbolt M, Zhu E, Andre V, Zhang E, Duran I, Bryant J, El-Rifai W, Liang P, Khizroev S. Catalytic Degradation of Organic Dyes Indicates Anti-Proliferative Effects of Magnetoelectric Nanoparticles. JOURNAL OF ELECTRONIC MATERIALS 2025; 54:5529-5538. [PMID: 40491600 PMCID: PMC12145325 DOI: 10.1007/s11664-025-11843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/13/2025] [Indexed: 06/11/2025]
Abstract
Over the past decade, magnetoelectric nanoparticles (MENPs) have proven effective in generating local electric fields in response to stimulation with a magnetic field. The applications of such nanoparticles are many and varied, with examples of prior research including use for on-demand drug release, wireless modulation and recording of neural activity, and organic dye degradation. This study investigates the potential for organic dye degradation to be used as a rapid and efficient screening tool to detect the magnetoelectric effect of MENPs, and how the results of such a test mirror the antiproliferative effect of said nanoparticles. Trypan blue was selected as an azo dye to test for dye degradation. Vials of the dye were treated with CoFe2O4@BaTiO3 core-shell MENPs of varying characteristics, both with and without concurrent 1-kHz 250-Oe magnetic stimulation. Dye degradation was measured using ultraviolet (UV)-vis spectroscopy. Dye degradation efficacy varied with varying nanoparticle synthesis parameters. As controls, nanoparticles of the same composition, but with an insignificant magnetoelectric effect, were used. SKOV-3 ovarian cancer cells were then treated with the same nanoparticles, and viability was measured with an adenosine triphosphate (ATP) assay. These measurements show a decrease in cell viability up to 60.3% of control (p = 0.0052), which mirrored the efficacy of dye degradation of up to 69.8% (p = 0.0037) in each of the particle variants, demonstrating the value of azo dye degradation as a simple screening test for MENPs, and showing the potential of MENPs used as wirelessly controlled nanodevices to allow targeted electric field-based treatments.
Collapse
Affiliation(s)
- Max Shotbolt
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Emily Zhu
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Victoria Andre
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Elric Zhang
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Isabelle Duran
- Miami Palmetto Highschool, 7431 SW 120th St, Pinecrest, FL 33156 USA
| | - John Bryant
- MOFFITT Cancer Center, 603 N Flamingo Rd # 151, Pembroke Pines, FL 33028 USA
| | - Wael El-Rifai
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Ping Liang
- Cellular Nanomed, Irvine at 8 Corporate Park, Irvine, CA 93606 USA
| | - Sakhrat Khizroev
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| |
Collapse
|
5
|
Kim YJ, Kent N, Vargas Paniagua E, Driscoll N, Tabet A, Koehler F, Malkin E, Frey E, Manthey M, Sahasrabudhe A, Cannon TM, Nagao K, Mankus D, Bisher M, de Nola G, Lytton-Jean A, Signorelli L, Gregurec D, Anikeeva P. Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation. NATURE NANOTECHNOLOGY 2025; 20:121-131. [PMID: 39394431 PMCID: PMC11750723 DOI: 10.1038/s41565-024-01798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/02/2024] [Indexed: 10/13/2024]
Abstract
Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core-double-shell Fe3O4-CoFe2O4-BaTiO3 architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm-2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml-1, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noah Kent
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emmanuel Vargas Paniagua
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolette Driscoll
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elian Malkin
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department Engineering in Computation and Cognition, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ethan Frey
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taylor M Cannon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keisuke Nagao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni de Nola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lorenzo Signorelli
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Danijela Gregurec
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Marrella A, Giannoni P, Lenzuni M, Suarato G, Fiocchi S, Chiaramello E, Ravazzani P. Temperature-Dependent Cytokine Neutralization Induced by Magnetoelectric Nanoparticles: An In Silico Study. Int J Mol Sci 2024; 25:13591. [PMID: 39769353 PMCID: PMC11678122 DOI: 10.3390/ijms252413591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory cytokines cooperate to maintain normal immune homeostasis, performing both a protective and a pro-inflammatory action in different body districts. However, their excessive persistence or deregulated expression may degenerate into tissue chronic inflammatory status. Advanced therapies should be designed to deploy selective cytokine neutralizers in the affected tissues. Magnetoelectric nanoparticles (MENPs) possess unexploited potentialities, conjugating their ferromagnetic nature, which enables confinement in a specific tissue by directed positioning when subjected to low-intensity magnetic fields, with the capability to generate high electric fields with elevated spatial resolution when subjected to higher magnetic fields. This work proposes to exploit the extremely localized heat generated by Joule's effect around MENPs under an external magnetic field to denature a harmful cytokine in a hypothetical tissue site. An interdisciplinary and multiphysics in silico study was conducted to provide comprehensive modeling of the temperature distribution generated by MENPs decorated with a membrane-derived microvesicle (MV) coating designed to allocate a specific antibody to bind a target cytokine. A damage model was also implemented to provide an estimation of the influence of several design parameters on the cytokine denaturation efficacy, with the final goal of guiding the future development of effective MENPs-based therapeutic applications and strategies.
Collapse
Affiliation(s)
- Alessandra Marrella
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genoa, 16132 Genoa, Italy;
| | - Martina Lenzuni
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Giulia Suarato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Serena Fiocchi
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Emma Chiaramello
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Paolo Ravazzani
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| |
Collapse
|
7
|
Bryant JM, Stimphil E, Andre V, Shotbolt M, Zhang E, Estrella V, Husain K, Weygand J, Marchion D, Lopez AS, Abrahams D, Chen S, Abdel-Mottaleb M, Conlan S, Oraiqat I, Khatri V, Guevara JA, Pilon-Thomas S, Redler G, Latifi K, Raghunand N, Yamoah K, Hoffe S, Costello J, Frakes JM, Liang P, Khizroev S, Gatenby RA, Malafa M. Nanoparticles use magnetoelectricity to target and eradicate cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618075. [PMID: 39464093 PMCID: PMC11507724 DOI: 10.1101/2024.10.13.618075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study presents the first in vivo and in vitro evidence of an externally controlled, predictive, MRI-based nanotheranostic agent capable of cancer cell specific targeting and killing via irreversible electroporation (IRE) in solid tumors. The rectangular-prism-shaped magnetoelectric nanoparticle is a smart nanoparticle that produces a local electric field in response to an externally applied magnetic field. When externally activated, MENPs are preferentially attracted to the highly conductive cancer cell membranes, which occurs in cancer cells because of dysregulated ion flux across their membranes. In a pancreatic adenocarcinoma murine model, MENPs activated by external magnetic fields during magnetic resonance imaging (MRI) resulted in a mean three-fold tumor volume reduction (62.3% vs 188.7%; P < .001) from a single treatment. In a longitudinal confirmatory study, 35% of mice treated with activated MENPs achieved a durable complete response for 14 weeks after one treatment. The degree of tumor volume reduction correlated with a decrease in MRI T 2 * relaxation time ( r = .351; P = .039) which suggests that MENPs have a potential to serve as a predictive nanotheranostic agent at time of treatment. There were no discernable toxicities associated with MENPs at any timepoint or on histopathological analysis of major organs. MENPs are a noninvasive alternative modality for the treatment of cancer. Summary We investigated the theranostic capabilities of magnetoelectric nanoparticles (MENPs) combined with MRI via a murine model of pancreatic adenocarcinoma. MENPs leverage the magnetoelectric effect to convert an applied magnetic field into local electric fields, which can induce irreversible electroporation of tumor cell membranes when activated by MRI. Additionally, MENPs modulate MRI relaxivity, which can be used to predict the degree of tumor ablation. Through a pilot study (n=21) and a confirmatory study (n=27), we demonstrated that, ≥300 µg of MRI-activated MENPs significantly reduced tumor volumes, averaging a three-fold decrease as compared to controls. Furthermore, there was a direct correlation between the reduction in tumor T 2 relaxation times and tumor volume reduction, highlighting the predictive prognostic value of MENPs. Six of 17 mice in the confirmatory study's experimental arms achieved a durable complete response, showcasing the potential for durable treatment outcomes. Importantly, the administration of MENPs was not associated with any evident toxicities. This study presents the first in vivo evidence of an externally controlled, MRI-based, theranostic agent that effectively targets and treats solid tumors via irreversible electroporation while sparing normal tissues, offering a new and promising approach to cancer therapy.
Collapse
|
8
|
Zhang E, Shotbolt M, Chang CY, Scott-Vandeusen A, Chen S, Liang P, Radu D, Khizroev S. Controlling action potentials with magnetoelectric nanoparticles. Brain Stimul 2024; 17:1005-1017. [PMID: 39209064 DOI: 10.1016/j.brs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Non-invasive or minutely invasive and wireless brain stimulation that can target any region of the brain is an open problem in engineering and neuroscience with serious implications for the treatment of numerous neurological diseases. Despite significant recent progress in advancing new methods of neuromodulation, none has successfully replicated the efficacy of traditional wired stimulation and improved on its downsides without introducing new complications. Due to the capability to convert magnetic fields into local electric fields, MagnetoElectric NanoParticle (MENP) neuromodulation is a recently proposed framework based on new materials that can locally sensitize neurons to specific, low-strength alternating current (AC) magnetic fields (50Hz 1.7 kOe field). However, the current research into this neuromodulation concept is at a very early stage, and the theoretically feasible game-changing advantages remain to be proven experimentally. To break this stalemate phase, this study leveraged understanding of the non-linear properties of MENPs and the nanoparticles' field interaction with the cellular microenvironment. Particularly, the applied magnetic field's strength and frequency were tailored to the M - H hysteresis loop of the nanoparticles. Furthermore, rectangular prisms instead of the more traditional "spherical" nanoparticle shapes were used to: (i) maximize the magnetoelectric effect and (ii) improve the nanoparticle-cell-membrane surface interface. Neuromodulation performance was evaluated in a series of exploratory in vitro experiments on 2446 rat hippocampus neurons. Linear mixed effect models were used to ensure the independence of samples by accounting for fixed adjacency effects in synchronized firing. Neural activity was measured over repeated 4-min segments, containing 90 s of baseline measurements, 90 s of stimulation measurements, and 60 s of post stimulation measurements. 87.5 % of stimulation attempts produced statistically significant (P < 0.05) changes in neural activity, with 58.3 % producing large changes (P < 0.01). In negative controls using either zero or 1.7 kOe-strength field without nanoparticles, no experiments produced significant changes in neural activity (P > 0.05 and P > 0.15 respectively). Furthermore, an exploratory analysis of a direct current (DC) magnetic field indicated that the DC field could be used with MENPs to inhibit neuron activity (P < 0.01). These experiments demonstrated the potential for magnetoelectric neuromodulation to offer a near one-to-one functionality match with conventional electrode stimulation without requiring surgical intervention or genetic modification to achieve success, instead relying on physical properties of these nanoparticles as "On/Off" control mechanisms. ONE-SENTENCE SUMMARY: This in vitro neural cell culture study explores how to exploit the non-linear and anisotropic properties of magnetoelectric nanoparticles for wireless neuromodulation, the importance of magnetic field strength and frequency matching for optimization, and demonstrates, for the first time, that magnetoelectric neuromodulation can inhibit neural responses.
Collapse
Affiliation(s)
- Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Chen-Yu Chang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | | | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL, University of Miami, USA
| | | | - Daniela Radu
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
9
|
Murali N, Rainu SK, Sharma A, Siddhanta S, Singh N, Betal S. Remotely Controlled Surface Charge Modulation of Magnetoelectric Nanogenerators for Swift and Efficient Drug Delivery. ACS OMEGA 2024; 9:28937-28950. [PMID: 38973906 PMCID: PMC11223158 DOI: 10.1021/acsomega.4c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024]
Abstract
We have developed a highly efficient technique of magnetically controlled swift loading and release of doxorubicin (DOX) drug using a magnetoelectric nanogenerator (MENG). Core-shell nanostructured MENG with a magnetostrictive core and piezoelectric shell act as field-responsive nanocarriers and possess the capability of field-triggered drug release in a cancerous environment. MENGs generate a surface electric dipole when subjected to a magnetic field due to the strain-mediated magnetoelectric effect. The capability of directional magnetic field-assisted modulation of the surface electrical dipole of MENG provides a mechanism to create/break ionic bonds with DOX molecules, which facilitates efficient drug attachment and on-demand swift detachment of the drug at a targeted site. The magnetic field-assisted drug-loading mechanism was minutely analyzed using spectrophotometry and Raman spectroscopy. The detailed time-dependent analysis of controlled drug release by the MENG under unidirectional and rotating magnetic field excitation was conducted using field-emission scanning electron microscopy, energy-dispersive X-ray, and atomic force microscopic measurements. In vitro, experiments validate the cytocompatibility and magnetically assisted on-demand and swift DOX drug delivery by the MENG near MCF-7 breast cancer cells, which results in a significant enhancement of cancer cell killing efficiency. A state-of-the-art experiment was performed to visualize the nanoscale magnetoelectric effect of MENG using off-axis electron holography under Lorentz conditions.
Collapse
Affiliation(s)
- Nandan Murali
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Simran Kaur Rainu
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Arti Sharma
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Soumik Siddhanta
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Neetu Singh
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Soutik Betal
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Ramezani Z, André V, Khizroev S. Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach. Biointerphases 2024; 19:031001. [PMID: 38738941 DOI: 10.1116/5.0199163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.
Collapse
Affiliation(s)
- Zeinab Ramezani
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Victoria André
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| |
Collapse
|
11
|
ZHANG Z, GE M, LIN H, SHI J. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency. JOURNAL OF INORGANIC MATERIALS 2024; 39:1114. [DOI: 10.15541/jim20240152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Kim YJ, Driscoll N, Kent N, Paniagua EV, Tabet A, Koehler F, Manthey M, Sahasrabudhe A, Signorelli L, Gregureć D, Anikeeva P. Magnetoelectric Nanodiscs Enable Wireless Transgene-Free Neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573272. [PMID: 38234742 PMCID: PMC10793401 DOI: 10.1101/2023.12.24.573272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Deep-brain stimulation (DBS) with implanted electrodes revolutionized treatment of movement disorders and empowered neuroscience studies. Identifying less invasive alternatives to DBS may further extend its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials offers an alternative to invasive DBS. Here, we synthesize magnetoelectric nanodiscs (MENDs) with a core-double shell Fe3O4-CoFe2O4-BaTiO3 architecture with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 μg/mm2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization, which combined with cable theory, corroborates our findings in vitro and informs magnetoelectric stimulation in vivo. MENDs injected into the ventral tegmental area of genetically intact mice at concentrations of 1 mg/mL enable remote control of reward behavior, setting the stage for mechanistic optimization of magnetoelectric neuromodulation and inspiring its future applications in fundamental and translational neuroscience.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolette Driscoll
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noah Kent
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emmanuel Vargas Paniagua
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lorenzo Signorelli
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen - Nuremberg, Erlangen, Germany
| | - Danijela Gregureć
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen - Nuremberg, Erlangen, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Mahdikia H, Saadati F, Alizadeh AM, Khalighfard S, Bekeschus S, Shokri B. Low-frequency magnetic fields potentiate plasma-modified magneto-electric nanoparticle drug loading for anticancer activity in vitro and in vivo. Sci Rep 2023; 13:17536. [PMID: 37845238 PMCID: PMC10579258 DOI: 10.1038/s41598-023-44683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
A multiferroic nanostructure of manganese ferrite barium-titanate called magneto-electric nanoparticles (MENs) was synthesized by a co-precipitation method. FTIR, Raman spectroscopy, TEM, and X-ray diffraction confirmed the presence of spinel core and perovskite shell phases with average crystallite sizes of 70-90 nm. Magnetic, optical, and magnetoelectrical properties of MENs were investigated using VSM, UV-Vis spectrophotometry, DLS, and EIS spectroscopy techniques. After pre-activation by low-pressure argon (Ar) plasma, the MENs were functionalized by a highly hydrophilic acrylic acid and Oxygen (AAc+O2) mixture to produce COOH and C=O-rich surfaces. The loading and release of doxorubicin hydrochloride (DOX) on MENs were investigated using UV-vis and fluorescence spectrophotometry under alternating low-frequency magnetic fields. Plasma treatment enabled drug-loading control by changing the particles' roughness as physical adsorption and creating functional groups for chemical absorption. This led to reduced metabolic activity and cell adherences associated with elevated expression of pro-apoptotic genes (BCL-2, caspase 3) in 4T1 breast cancer cells in vitro exposed to alternating current magnetic field (ACMF) compared to MENs-DOX without field exposure. ACMF-potentiated anticancer effects of MENs were validated in vivo in tumor-bearing Balb/C mice. Altogether, our results suggest potentiated drug loading of MENs showing superior anticancer activity in vitro and in vivo when combined with ACMF.
Collapse
Affiliation(s)
- Hamed Mahdikia
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Fariba Saadati
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Ali Mohammad Alizadeh
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
14
|
Li J, Wu C, Zeng M, Zhang Y, Wei D, Sun J, Fan H. Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. J Mater Chem B 2023; 11:9056-9083. [PMID: 37649427 DOI: 10.1039/d3tb01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nerve injuries and neurological diseases remain intractable clinical challenges. Despite the advantages of stem cell therapy in treating neurological disorders, uncontrollable cell fates and loss of cell function in vivo are still challenging. Recently, increasing attention has been given to the roles of external physical signals, such as electricity and ultrasound, in regulating stem cell fate as well as activating or inhibiting neuronal activity, which provides new insights for the treatment of neurological disorders. However, direct physical stimulations in vivo are short in accuracy and safety. Functional materials that can absorb energy from a specific physical field exerted in a wireless way and then release another localized physical signal hold great advantages in mediating noninvasive or minimally invasive accurate indirect physical stimulations to promote the therapeutic effect on neurological disorders. In this review, the mechanism by which various physical signals regulate stem cell fate and neuronal activity is summarized. Based on these concepts, the approaches of using functional materials to mediate indirect wireless physical stimulation for neuro-modulation and regeneration are systematically reviewed. We expect that this review will contribute to developing wireless platforms for neural stimulation as an assistance for the treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Jialu Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
15
|
Chernozem RV, Urakova AO, Chernozem PV, Koptsev DA, Mukhortova YR, Grubova IY, Wagner DV, Gerasimov EY, Surmeneva MA, Kholkin AL, Surmenev RA. Novel Biocompatible Magnetoelectric MnFe 2 O 4 Core@BCZT Shell Nano-Hetero-Structures with Efficient Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302808. [PMID: 37357170 DOI: 10.1002/smll.202302808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Magnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe2 O4 (MFO) and ferroelectric Ba0.85 Ca0.15 Zr0.1 Ti0.9 O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT-shell with a 2-5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP- and OA-functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g-1 , respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core-shell ME NPs of MFO and BCZT can be considered as a promising tool for non-invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.
Collapse
Affiliation(s)
- Roman V Chernozem
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Alina O Urakova
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Polina V Chernozem
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Danila A Koptsev
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Yulia R Mukhortova
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Irina Yu Grubova
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Dmitry V Wagner
- Faculty of Radiophysics, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Evgeny Yu Gerasimov
- Catalyst Research Department, Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090, Russia
| | - Maria A Surmeneva
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Andrei L Kholkin
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Roman A Surmenev
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| |
Collapse
|
16
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Ekhator C, Qureshi MQ, Zuberi AW, Hussain M, Sangroula N, Yerra S, Devi M, Naseem MA, Bellegarde SB, Pendyala PR. Advances and Opportunities in Nanoparticle Drug Delivery for Central Nervous System Disorders: A Review of Current Advances. Cureus 2023; 15:e44302. [PMID: 37649926 PMCID: PMC10463100 DOI: 10.7759/cureus.44302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
This narrative review provides an overview of the current advances, challenges, and opportunities in nanoparticle drug delivery for central nervous system (CNS) disorders. The treatment of central nervous system disorders is challenging due to the blood-brain barrier (BBB), which limits the delivery of therapeutic agents to the brain. Promising approaches to address these issues and improve the efficacy of CNS disease therapies are provided by nanoparticle-based drug delivery systems. Nanoparticles, such as liposomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles, can be modified to enhance targeting, stability, and drug-release patterns. They allow for the encapsulation of a variety of therapeutic compounds and can be functionalized with ligands or antibodies for active targeting, minimizing off-target effects. Additionally, nanoparticles can circumvent drug resistance processes and provide versatile platforms for applications that combine therapeutic and diagnostic functions. Although the delivery of CNS medications using nanoparticles has advanced significantly, there are still challenges to be resolved. These include understanding the BBB interactions, doing long-term safety studies, and scaling up the production. However, improvements in nanotechnology and a deeper comprehension of CNS disorders provide opportunities to enhance treatment results and address unmet medical requirements. Future research and ongoing clinical trials are required to further explore the potential of nanoparticle drug delivery for CNS disorders.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | | | | | | | | | - Sushanth Yerra
- Internal Medicine, University of Medicine and Health Sciences, Basseterre, KNA
| | | | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | - Praful R Pendyala
- Neurology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
18
|
Smith IT, Zhang E, Yildirim YA, Campos MA, Abdel-Mottaleb M, Yildirim B, Ramezani Z, Andre VL, Scott-Vandeusen A, Liang P, Khizroev S. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1849. [PMID: 36056752 DOI: 10.1002/wnan.1849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Isadora Takako Smith
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Yagmur Akin Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Manuel Alberteris Campos
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Mostafa Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Burak Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Zeinab Ramezani
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Victoria Louise Andre
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Aidan Scott-Vandeusen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Ping Liang
- Cellular Nanomed, Inc. (CNMI), Irvine, California, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
19
|
Nizamov TR, Amirov AA, Kuznetsova TO, Dorofievich IV, Bordyuzhin IG, Zhukov DG, Ivanova AV, Gabashvili AN, Tabachkova NY, Tepanov AA, Shchetinin IV, Abakumov MA, Savchenko AG, Majouga AG. Synthesis and Functional Characterization of Co xFe 3-xO 4-BaTiO 3 Magnetoelectric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:811. [PMID: 36903693 PMCID: PMC10004808 DOI: 10.3390/nano13050811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 μg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.
Collapse
Affiliation(s)
- Timur R. Nizamov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Abdulkarim A. Amirov
- Amirkhanov Institute of Physics of Dagestan Federal Research Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
| | - Tatiana O. Kuznetsova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Irina V. Dorofievich
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Igor G. Bordyuzhin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Dmitry G. Zhukov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna V. Ivanova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna N. Gabashvili
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Nataliya Yu. Tabachkova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | | - Igor V. Shchetinin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander G. Savchenko
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Alexander G. Majouga
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
20
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Effect of Piezoelectric BaTiO 3 Filler on Mechanical and Magnetoelectric Properties of Zn 0.25Co 0.75Fe 2O 4/PVDF-TrFE Composites. Polymers (Basel) 2022; 14:polym14224807. [PMID: 36432934 PMCID: PMC9695481 DOI: 10.3390/polym14224807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO3, BTO) and/or ferrimagnetic (Zn0.25Co0.75Fe2O4, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds.
Collapse
|
22
|
Zhang E, Abdel-Mottaleb M, Liang P, Navarrete B, Yildirim YA, Campos MA, Smith IT, Wang P, Yildirim B, Yang L, Chen S, Smith I, Lur G, Nguyen T, Jin X, Noga BR, Ganzer P, Khizroev S. Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles. Brain Stimul 2022; 15:1451-1462. [PMID: 36374738 DOI: 10.1016/j.brs.2022.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2022] Open
Abstract
The in vitro study demonstrates wirelessly controlled modulation of neural activity using magnetoelectric nanoparticles (MENPs), synchronized to magnetic field application with a sub-25-msec temporal response. Herein, MENPs are sub-30-nm CoFe2O4@BaTiO3 core-shell nanostructures. MENPs were added to E18 rat hippocampal cell cultures (0.5 μg of MENPs per 100,000 neurons) tagged with fluorescent Ca2+ sensitive indicator cal520. MENPs were shown to wirelessly induce calcium transients which were synchronized with application of 1200-Oe bipolar 25-msec magnetic pulses at a rate of 20 pulses/sec. The observed calcium transients were similar, in shape and magnitude, to those generated through the control electric field stimulation with a 50-μA current, and they were inhibited by the sodium channel blocker tetrodotoxin. The observed MENP-based magnetic excitation of neural activity is in agreement with the non-linear M - H hysteresis loop of the MENPs, wherein the MENPs' coercivity value sets the threshold for the externally applied magnetic field.
Collapse
Affiliation(s)
- E Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - M Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - P Liang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; Cellular Nanomed, Inc, Irvine, CA, USA.
| | - B Navarrete
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Y Akin Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - M Alberteris Campos
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - I T Smith
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - P Wang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - B Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - L Yang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - S Chen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; Cellular Nanomed, Inc, Irvine, CA, USA
| | - I Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - G Lur
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - T Nguyen
- Stark Neuroscience Institute, Indiana University - Purdue University at Indianapolis, Indianapolis, IN, USA
| | - X Jin
- Stark Neuroscience Institute, Indiana University - Purdue University at Indianapolis, Indianapolis, IN, USA
| | - B R Noga
- The Miami Project to Cure Paralysis, University of Miami, FL, USA
| | - P Ganzer
- The Miami Project to Cure Paralysis, University of Miami, FL, USA
| | - S Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
| |
Collapse
|
23
|
Fiocchi S, Chiaramello E, Marrella A, Suarato G, Bonato M, Parazzini M, Ravazzani P. Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response. PLoS One 2022; 17:e0274676. [PMID: 36149898 PMCID: PMC9506614 DOI: 10.1371/journal.pone.0274676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The recent development of core-shell nanoparticles which combine strain coupled magnetostrictive and piezoelectric phases, has attracted a lot of attention due to their ability to yield strong magnetoelectric effect even at room temperature, thus making them a promising tool to enable biomedical applications. To fully exploit their potentialities and to adapt their use to in vivo applications, this study analyzes, through a numerical approach, their magnetoelectric behavior, shortly quantified by the magnetoelectric coupling coefficient (αME), thus providing an important milestone for the characterization of the magnetoelectric effect at the nanoscale. In view of recent evidence showing that αME is strongly affected by both the applied magnetic field DC bias and AC frequency, this study implements a nonlinear model, based on magnetic hysteresis, to describe the responses of two different core-shell nanoparticles to various magnetic field excitation stimuli. The proposed model is also used to evaluate to which extent realistic variables such as core diameter and shell thickness affect the electric output. Results prove that αME of 80 nm cobalt ferrite-barium titanate (CFO-BTO) nanoparticles with a 60:40 ratio is equal to about 0.28 V/cm∙Oe corresponding to electric fields up to about 1000 V/cm when a strong DC bias is applied. However, the same electric output can be obtained even in absence of DC field with very low AC fields, by exploiting the hysteretic characteristics of the same composites. The analysis of core and shell dimension is as such to indicate that, to maximize αME, larger core diameter and thinner shell nanoparticles should be preferred. These results, taken together, suggest that it is possible to tune magnetoelectric nanoparticles electric responses by controlling their composition and their size, thus opening the opportunity to adapt their structure on the specific application to pursue.
Collapse
Affiliation(s)
- Serena Fiocchi
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Emma Chiaramello
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Alessandra Marrella
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Giulia Suarato
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Marta Bonato
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Marta Parazzini
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Paolo Ravazzani
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| |
Collapse
|
24
|
Fiocchi S, Chiaramello E, Marrella A, Bonato M, Parazzini M, Ravazzani P. Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study. J Neural Eng 2022; 19. [PMID: 36075197 DOI: 10.1088/1741-2552/ac9085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to enable different biomedical applications. They could be used to overcome the intrinsic constraints posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation. APPROACH By using computational electromagnetic techniques, we modelled the behavior of recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical targets of a highly detailed anatomical head model. The distributions and the tissue penetration of the electric fields induced by MENPs clusters in each tissue will be compared to the distributions induced by traditional TMS coils for non-invasive brain stimulation positioned on the left prefrontal cortex of a highly detailed anatomical head model. MAIN RESULTS MENPs clusters can induce highly focused electric fields with amplitude close to the neural activation threshold in all the brain tissues of interest for the treatment of most neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of V/m over a broad volume of the prefrontal cortex, but they are unlikely able to efficiently stimulate even small volumes of subcortical and deep tissues. SIGNIFICANCE Our numerical results suggest that the use of MENPs for brain stimulation may potentially led to a future pinpoint treatment of neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and subcortical tissues and networks has been assumed to play a crucial role.
Collapse
Affiliation(s)
- Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Alessandra Marrella
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Area della Ricerca, via de Marini 6, Genova, 16149, ITALY
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| |
Collapse
|
25
|
Mushtaq S, Shahzad K, Rizwan M, Ul-Hamid A, Abbasi BH, Khalid W, Atif M, Ahmad N, Ali Z, Abbasi R. Magnetoelectric core-shell CoFe 2O 4@BaTiO 3 nanorods: their role in drug delivery and effect on multidrug resistance pump activity in vitro. RSC Adv 2022; 12:24958-24979. [PMID: 36199887 PMCID: PMC9434104 DOI: 10.1039/d2ra03429h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle mediated targeted drug delivery has become a widespread area of cancer research to address premature drug delivery problems. We report the synthesis of magneto-electric (ME) core-shell cobalt ferrite-barium titanate nanorods (CFO@BTO NRs) to achieve "on demand" drug release in vitro. Physical characterizations confirmed the formation of pure CFO@BTO NRs with appropriate magnetic and ferroelectric response, favorable for an externally controlled drug delivery system. Functionalization of NRs with doxorubicin (DOX) and methotrexate (MTX) achieved up to 98% drug release in 20 minutes, under a 4 mT magnetic field (MF). We observed strong MF and dose dependent cytotoxic response in HepG2 and HT144 cells and 3D spheroid models (p < 0.05). Cytotoxicity was characterized by enhanced oxidative stress, causing p53 mediated cell cycle arrest, DNA damage and cellular apoptosis via downregulation of Bcl-2 expression. In addition, MF and dose dependent inhibition of Multidrug Resistance (MDR) pump activity was also observed (p < 0.05) indicating effectivity in chemo-resistant cancers. Hence, CFO@BTO NRs represent an efficient carrier system for controlled drug delivery in cancer nanotherapeutics, where higher drug uptake is a prerequisite for effective treatment.
Collapse
Affiliation(s)
- Sadaf Mushtaq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan +92 51 9106283 +92 51 9106281
- Institute of Biomedical and Genetic Engineering G-9/1 Islamabad Pakistan
| | - Khuram Shahzad
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Muhammad Rizwan
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan +92 51 9106283 +92 51 9106281
| | - Waqas Khalid
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Muhammad Atif
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering G-9/1 Islamabad Pakistan
| | - Zulqurnain Ali
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering G-9/1 Islamabad Pakistan
| |
Collapse
|
26
|
Chang S, Wang S, Liu Z, Wang X. Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering. Gels 2022; 8:gels8060389. [PMID: 35735733 PMCID: PMC9222548 DOI: 10.3390/gels8060389] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022] Open
Abstract
Bone defects, as one of the most urgent problems in the orthopedic clinic, have attracted much attention from the biomedical community and society. Hydrogels have been widely used in the biomedical field for tissue engineering research because of their excellent hydrophilicity, biocompatibility, and degradability. Stimulus-responsive hydrogels, as a new type of smart biomaterial, have more advantages in sensing external physical (light, temperature, pressure, electric field, magnetic field, etc.), chemical (pH, redox reaction, ions, etc.), biochemical (glucose, enzymes, etc.) and other different stimuli. They can respond to stimuli such as the characteristics of the 3D shape and solid-liquid phase state, and exhibit special properties (injection ability, self-repair, shape memory, etc.), thus becoming an ideal material to provide cell adhesion, proliferation, and differentiation, and achieve precise bone defect repair. This review is focused on the classification, design concepts, and research progress of stimulus-responsive hydrogels based on different types of external environmental stimuli, aiming at introducing new ideas and methods for repairing complex bone defects.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Z.L.); (X.W.)
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
27
|
Bok I, Haber I, Qu X, Hai A. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Sci Rep 2022; 12:8386. [PMID: 35589877 PMCID: PMC9120189 DOI: 10.1038/s41598-022-12303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Ido Haber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaofei Qu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
28
|
Jang J, Park CB. Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates. SCIENCE ADVANCES 2022; 8:eabn1675. [PMID: 35544560 PMCID: PMC9094672 DOI: 10.1126/sciadv.abn1675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
The abnormal self-assembly of β-amyloid (Aβ) peptides and their deposition in the brain is a major pathological feature of Alzheimer's disease (AD), the most prevalent chronic neurodegenerative disease affecting nearly 50 million people worldwide. Here, we report a newly discovered function of magnetoelectric nanomaterials for the dissociation of highly stable Aβ aggregates under low-frequency magnetic field. We synthesized magnetoelectric BiFeO3-coated CoFe2O4 (BCFO) nanoparticles, which emit excited charge carriers in response to low-frequency magnetic field without generating heat. We demonstrated that the magnetoelectric coupling effect of BCFO nanoparticles successfully dissociates Aβ aggregates via water and dissolved oxygen molecules. Our cytotoxicity evaluation confirmed the alleviating effect of magnetoelectrically excited BCFO nanoparticles on Aβ-associated toxicity. We found high efficacy of BCFO nanoparticles for the clearance of microsized Aβ plaques in ex vivo brain tissues of an AD mouse model. This study shows the potential of magnetoelectric materials for future AD treatment using magnetic field.
Collapse
|
29
|
Pardo M, Khizroev S. Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1781. [PMID: 35191206 DOI: 10.1002/wnan.1781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Almost 1000 million people have recently been diagnosed with a mental health or substance disorder (Ritchie & Roser, 2018). Psychiatric disorders, and their treatment, represent a big burden to the society worldwide, causing about 8 million deaths per year (Walker et al., 2015). Daily progress in science enables continuous advances in methods to treat patients; however, the brain remains to be the most unknown and complex organ of the body. There is a growing demand for innovative approaches to treat psychiatric as well as neurodegenerative disorders, disorders with unknown curability, and treatments mostly designed to slow disease progression. Based on that need and the peculiarity of the central nervous system, in the present review, we highlight the handicaps of the existing approaches as well as discuss the potential of the recently introduced magnetoelectric nanoparticles (MENPs) to become a game-changing tool in future applications for the treatment of brain alterations. Unlike other stimulation approaches, MENPs have the potential to enable a wirelessly controlled stimulation at a single-neuron level without requiring genetic modification of the neural tissue and no toxicity has yet been reported. Their potential as a new tool for targeting the brain is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Neurological Disease.
Collapse
Affiliation(s)
- Marta Pardo
- Miller School of Medicine, Department of Neurology and Molecular and Cellular Pharmacology, University of Miami, Miami, Florida, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
30
|
Saha R, Wu K, Bloom RP, Liang S, Tonini D, Wang JP. A review on magnetic and spintronic neurostimulation: challenges and prospects. NANOTECHNOLOGY 2022; 33:182004. [PMID: 35013010 DOI: 10.1088/1361-6528/ac49be] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In the treatment of neurodegenerative, sensory and cardiovascular diseases, electrical probes and arrays have shown quite a promising success rate. However, despite the outstanding clinical outcomes, their operation is significantly hindered by non-selective control of electric fields. A promising alternative is micromagnetic stimulation (μMS) due to the high permeability of magnetic field through biological tissues. The induced electric field from the time-varying magnetic field generated by magnetic neurostimulators is used to remotely stimulate neighboring neurons. Due to the spatial asymmetry of the induced electric field, high spatial selectivity of neurostimulation has been realized. Herein, some popular choices of magnetic neurostimulators such as microcoils (μcoils) and spintronic nanodevices are reviewed. The neurostimulator features such as power consumption and resolution (aiming at cellular level) are discussed. In addition, the chronic stability and biocompatibility of these implantable neurostimulator are commented in favor of further translation to clinical settings. Furthermore, magnetic nanoparticles (MNPs), as another invaluable neurostimulation material, has emerged in recent years. Thus, in this review we have also included MNPs as a remote neurostimulation solution that overcomes physical limitations of invasive implants. Overall, this review provides peers with the recent development of ultra-low power, cellular-level, spatially selective magnetic neurostimulators of dimensions within micro- to nano-range for treating chronic neurological disorders. At the end of this review, some potential applications of next generation neuro-devices have also been discussed.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Robert P Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
31
|
Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, Liu A, Wei D, Sun J, Zhou L, Fan H. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100695. [PMID: 34176235 DOI: 10.1002/adhm.202100695] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Electrical stimulation is regarded pivotal to promote repair of nerve injuries, however, failed to get extensive application in vivo due to the challenges in noninvasive electrical loading accompanying with construction of biomimetic cell niche. Herein, a new concept of magneto responsive electric 3D matrix for remote and wireless electrical stimulation is demonstrated. By the preparation of magnetoelectric core/shell structured Fe3 O4 @BaTiO3 NPs-loaded hyaluronan/collagen hydrogels, which recapitulate considerable magneto-electricity and vital features of native neural extracellular matrix, the enhancement of neurogenesis both in cellular level and spinal cord injury in vivo with external pulsed magnetic field applied is proved. The findings pave the way for a novel class of remote controlling and delivering electricity through extracellular niches-mimicked hydrogel network, arising prospects not only in neurogenesis but also in human-computer interaction with higher resolution.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Suping Chen
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Xiaoyin Liu
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Kai Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Amin Liu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Dan Wei
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Jing Sun
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Liangxue Zhou
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
32
|
Nguyen T, Gao J, Wang P, Nagesetti A, Andrews P, Masood S, Vriesman Z, Liang P, Khizroev S, Jin X. In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles. Neurotherapeutics 2021; 18:2091-2106. [PMID: 34131858 PMCID: PMC8609092 DOI: 10.1007/s13311-021-01071-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/04/2023] Open
Abstract
Wireless and precise stimulation of deep brain structures could have important applications to study intact brain circuits and treat neurological disorders. Herein, we report that magnetoelectric nanoparticles (MENs) can be guided to a targeted brain region to stimulate brain activity with a magnetic field. We demonstrated the nanoparticles' capability to reliably evoke fast neuronal responses in cortical slices ex vivo. After fluorescently labeled MENs were intravenously injected and delivered to a targeted brain region by applying a magnetic field gradient, a magnetic field of low intensity (350-450 Oe) applied to the mouse head reliably evoked cortical activities, as revealed by two-photon and mesoscopic imaging of calcium signals and by an increased number of c-Fos expressing cells after stimulation. Neither brain delivery of MENs nor the magnetic stimulation caused significant increases in astrocytes and microglia. Thus, MENs could enable a non-invasive and contactless deep brain stimulation without the need of genetic manipulation.
Collapse
Affiliation(s)
- Tyler Nguyen
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN USA
- Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jianhua Gao
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ping Wang
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, FL USA
| | - Abhignyan Nagesetti
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, FL USA
| | - Peter Andrews
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sehban Masood
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Zoe Vriesman
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | | | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, FL USA
| | - Xiaoming Jin
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|