1
|
Yang Y, Yang Y, Yang S, Yao Y, Yang Y, Liu L, Rui X, Yu Y. Dual-Salt Low-Concentration Electrolyte for Low-Temperature Sodium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22624-22632. [PMID: 40194291 DOI: 10.1021/acsami.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The high theoretical capacity of 1165 mAh g-1 and lower cost position sodium metal batteries (SMBs) as a promising alternative to lithium-based batteries. However, their application at ultralow temperatures is limited by conventional commercial electrolytes, which present challenges such as an unstable solid electrolyte interphase (SEI) and suboptimal ionic kinetic performance. Building on the significant impact of low concentration and the pivotal role of SEI films in enhancing the cycle stability of batteries, we develop a low-concentration and dual-salt carbonate electrolyte. This low-concentration electrolyte enhances the fluidity of the electrolyte, while the dual-salt system promotes the formation of a high proportion of anions solvated structure and robust inorganic SEI films. This innovative combination markedly improves the ionic kinetic performance and low temperature cycle life. Consequently, the Na||Na symmetric cell with this electrolyte exhibits a prolonged cycling life of 900 h, while the Na||Na3V2(PO4)3 full cell maintains a capacity of 70.5 mAh g-1 over 100 cycles at -40 °C.
Collapse
Affiliation(s)
- Yongjian Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China
| | - Yi Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China
| | - Shoumeng Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Hasanpoor M, Saurel D, Barreno RC, Fraysse K, Echeverría M, Jáuregui M, Bonilla F, Greene GW, Kerr R, Forsyth M, Howlett PC. Morphological Evolution and Solid-Electrolyte Interphase Formation on LiNi 0.6Mn 0.2Co 0.2O 2 Cathodes Using Highly Concentrated Ionic Liquid Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13196-13205. [PMID: 35274926 DOI: 10.1021/acsami.1c21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Employing high-voltage Ni-rich cathodes in Li metal batteries (LMBs) requires stabilization of the electrode/electrolyte interfaces at both electrodes. A stable solid-electrolyte interphase (SEI) and suppression of active material pulverization remain the greatest challenges to achieving efficient long-term cycling. Herein, studies of NMC622 (1 mAh cm-2) cathodes were performed using highly concentrated N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (C3mpyrFSI) 50 mol % lithium bis(fluorosulfonyl)imide (LiFSI) ionic liquid electrolyte (ILE). The resulting SEI formed at the cathode enabled promising cycling performance (98.13% capacity retention after 100 cycles), and a low degree of ion mixing and lattice expansion was observed, even at an elevated temperature of 50 °C. Fitting of acquired impedance spectra indicated that the SEI resistivity (RSEI) had a low and stable contribution to the internal resistivity of the system, whereas active material pulverization and secondary grain isolation significantly increased the charge transfer resistance (RCT) throughout cycling.
Collapse
Affiliation(s)
- Meisam Hasanpoor
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Damien Saurel
- CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain
| | - Rosalía Cid Barreno
- CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain
| | - Kilian Fraysse
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - María Echeverría
- CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain
| | - Maria Jáuregui
- CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain
| | - Francisco Bonilla
- CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain
| | - George W Greene
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Robert Kerr
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Patrick C Howlett
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| |
Collapse
|
3
|
Guo X, Li X, Gan G, Wang L, Fan S, Wang P, Tadé MO, Liu S. Functionalized Activated Carbon for Competing Adsorption of Volatile Organic Compounds and Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56510-56518. [PMID: 34788539 DOI: 10.1021/acsami.1c18507] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interfacial interaction of activated carbon with volatile organic compounds (VOCs) is seriously affected by water vapor. Therefore, it is vital to enhance the hydrophobic performance of activated carbon for expanding its application in industrial and environmental fields. Herein, a series of hydrophobic activated carbon was fabricated by tailored mixed siloxane and applied in dynamic competitive adsorption at 0, 50, and 90% humidity. Simultaneously, the diffusion molecular models and multicomponent adsorption experiments were used to study the adsorption and diffusion mechanisms. The hydrophobicity of activated carbon was significantly improved by loading of mixed siloxane, in which the equilibrium water absorption decreased from 21.9 to 7.2% and the contact angles increased by 70.10°. Meanwhile, dynamic competitive adsorption at different humidities indicated that the siloxane-functionalized activated carbons (SACs) showed much better competitive adsorption performances for VOCs than original activated carbon, which was further confirmed by the theoretical calculations of adsorption energy. In addition, a remarkable adsorption selectivity and reusability could be demonstrated to VOCs with different polarities on SACs. This study not only provides a new strategy for the hydrophobic modification of activated carbon materials but also offers theoretical guidance for the treatment of gas streams with significant water contents.
Collapse
Affiliation(s)
- Xuecheng Guo
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Liang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Penglei Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Moses O Tadé
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Shaomin Liu
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
4
|
Gao Y, Yang SC, Zhu MH, Zhu XD, Luan X, Liu XL, Lai X, Yuan Y, Lu Q, Sun P, Lovell JF, Chen HZ, Fang C. Metal Phenolic Network-Integrated Multistage Nanosystem for Enhanced Drug Delivery to Solid Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100789. [PMID: 34142432 DOI: 10.1002/smll.202100789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Metal-phenolic networks (MPNs) are an emerging class of supramolecular surface modifiers with potential use in various fields including drug delivery. Here, the development of a unique MPN-integrated core-satellite nanosystem (CS-NS) is reported. The "core" component of CS-NS comprises a liposome loaded with EDTA (a metal ion chelator) in the aqueous core and DiR (a near-infrared photothermal transducer) in the bilayer. The "satellite" component comprises mesoporous silica nanoparticles (MSNs) encapsulating doxorubicin and is coated with a Cu2+ -tannic acid MPN. Liposomes and MSNs self-assemble into the CS-NS through adhesion mediated by the MPN. When irradiated with an 808 nm laser, CS-NS liberated the entrapped EDTA, leading to Cu2+ chelation and subsequent disassembly of the core-satellite nanostructure. Photo-conversion from the large assembly to the small constituent particles proceeded within 5 min. Light-triggered CS-NS disassembly enhanced the carrier and cargo penetration and accumulation in tumor spheroids in vitro and in orthotopic murine mammary tumors in vivo. CS-NS is long circulating in the blood and conferred improved survival outcomes to tumor-bearing mice treated with light, compared to controls. These results demonstrate an MPN-integrated multistage nanosystem for improved solid tumor treatment.
Collapse
Affiliation(s)
- Yuhao Gao
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xin-Di Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Liang Liu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yihang Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| |
Collapse
|
5
|
Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|