1
|
Leoi MWN, Zheng XT, Yu Y, Gao J, Ong DHS, Koh CZH, Chen P, Yang L. Redefining Metal Organic Frameworks in Biosensors: Where Are We Now? ACS APPLIED MATERIALS & INTERFACES 2025; 17:13246-13278. [PMID: 39984305 DOI: 10.1021/acsami.4c19307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
As a broad class of porous nanomaterials, metal organic frameworks (MOFs) exhibit unique properties, such as broad tunability, high stability, atomically well-defined structure, and ordered uniform porosity. These features facilitate the rational design of MOFs as an outstanding nanomaterial candidate in biosensing, therapeutics delivery, and catalysis applications. Recently, novel modifications of the MOF nanoarchitecture and incorporation of synergistic guest materials have been investigated to achieve well-tailored functional design, gradually bridging the fundamental gap between structure and targeted activity. Specifically, the burgeoning studies of MOF-based high-performance biosensors have aimed to achieve high sensitivity, selectivity, and stability for a large variety of analytes in different sensing matrices. In this review, we elaborate the key roles of MOF nanomaterials in biosensors, including their high stability as a protective framework for biomolecules, their intrinsic sensitivity-enhancing functionalities, and their contribution of catalytic activity as a nanozyme. By examining the main structures of MOFs, we further identify varied structural engineering approaches, such as precursor tuning and guest molecule incorporation, that elucidate the concept of the structure-activity relationship of MOFs. Furthermore, we highlight the unique applications of MOF nanomaterials in electrochemical and optical biosensors for enhanced sensor performances. Finally, the challenges and future perspectives of developing next-generation MOF nanomaterials for biosensor applications are discussed.
Collapse
Affiliation(s)
- Melisa Wei Ning Leoi
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jiajia Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Deborah Hui Shan Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Clarence Zhi Han Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| |
Collapse
|
2
|
Tong L, Huang S, Chen G, Ouyang G. Integrating Enzymes with Reticular Frameworks To Govern Biocatalysis. Angew Chem Int Ed Engl 2025; 64:e202421192. [PMID: 39805800 DOI: 10.1002/anie.202421192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular framework hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme conformation, leading to biocatalytic rate enhancement, or imparting enzymes with non-native biocatalytic functions, including substrate selectivity and new activity. Additionally, the feasibility of leveraging the photothermal effect of a framework to optimize the local reaction temperature and photoelectric effect to elicit diverse photoenzyme-coupled reactions is also summarized in detail, which can expand the functional repertoire of biocatalytic transformations under light irradiation. This Minireview underscores the potential of reticular frameworks as tunable and reliable platforms to govern biocatalysis, offering pathways for engineering sustainable, efficient, and selective biocatalytic reactors in pharmaceutical, environmental, and energy-related applications.
Collapse
Affiliation(s)
- Linjing Tong
- Sun Yat-sen University MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangzhou 510275, China
| | - Siming Huang
- Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou 511436, China
| | - Guosheng Chen
- Sun Yat-sen University MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangzhou 510275, China
- Sun Yat-sen University Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Zhuhai 519082, China
| | - Gangfeng Ouyang
- Sun Yat-sen University MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangzhou 510275, China
- Sun Yat-sen University Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Zhuhai 519082, China
| |
Collapse
|
3
|
Wu Q, Liang J, Wang D, Wang R, Janiak C. Host molecules inside metal-organic frameworks: host@MOF and guest@host@MOF (Matrjoschka) materials. Chem Soc Rev 2025; 54:601-622. [PMID: 39589788 DOI: 10.1039/d4cs00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The controllable encapsulation of host molecules (such as porphyrin, phthalocyanine, crown ether, calixarene or cucurbituril organic macrocycles, cages, metal-organic polyhedrons and enzymes) into the pores of metal-organic frameworks (MOFs) to form host-in-host (host@MOF) materials has attracted increasing research interest in various fields. These host@MOF materials combine the merits of MOFs as a host matrix and functional host molecules to exhibit synergistic functionalities for the formation of guest@host@MOF materials in sorption and separation, ion capture, catalysis, proton/ion conduction and biosensors. (This guest@host@MOF construction is reminiscent of Russian (Matrjoschka) dolls which are nested dolls of decreasing size placed one inside another.) In this tutorial review, the advantages of MOFs as a host matrix are presented; the encapsulation approaches and general important considerations for the preparation of host@MOF materials are introduced. The state-of-the-art examples of these materials based on different host molecules are shown, and representative applications and general characterization of these materials are discussed. This review will guide researchers attempting to design functional host@MOF and guest@host@MOF materials for various applications.
Collapse
Affiliation(s)
- Qiao Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
| | - Jun Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Dan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
| | - Ruihu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
4
|
Polash SA, Poddar A, Pyreddy S, Carraro F, D'Angelo AM, Bryant G, Falcaro P, Shukla R. Phase Characterization and Bioactivity Evaluation of Nucleic Acid-Encapsulated Biomimetically Mineralized ZIF-8. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3002-3012. [PMID: 39761101 DOI: 10.1021/acsami.4c17664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications. Different solvents and synthesis methods influence the ZIF's topologies and framework structures. The physicochemical properties of plasmid-encapsulated ZIF (plasmid@ZIF) can be controlled by tuning the precursors and biomolecular concentration. Using plasmid@ZIF, this study demonstrated that nucleic acids can be loaded precisely and released with a controlled bioactivity within cells. It was found that the ZIF phases substantially influenced both NA delivery into the cell and physicochemical properties. As a result of this study, we better understand MOFs' potential in NA delivery, and it emphasizes the importance of precisely controlling their physicochemical properties.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Centre for Advance Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - Suneela Pyreddy
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Anita M D'Angelo
- Australian Nuclear Science and Technology Organization (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Centre for Advance Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Qin Z, Xu Z, Liu Y, Qin X, Liu G, Wei X, Zhang H. Facile colorimetric detection of As(V) in Rice with immobilized acid phosphatase on hollow metal-organic frameworks hybrid with peroxidase-like activity. Food Chem X 2025; 25:102051. [PMID: 39758063 PMCID: PMC11697283 DOI: 10.1016/j.fochx.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Quantitative analysis of As(V) in rice is of great significance for food safety and heavy metal pollution control. Here, a facile colorimetric method for As(V) detection was constructed by using immobilized acid phosphatase (ACP) in hollow metal-organic frameworks hybrid. Metalloporphyrin and gold nanoparticles modified hollow zeolite imidazole framework-8 [Au/HZIF-8@TCPP(Fe)], named AuHT, was chosen here as ACP immobilizing carrier with peroxidase-like activity. Firstly, the morphology, structure, immobilization efficiency and catalytic ability of obtained AuHT@ACP were fully characterized. Then, based on the inhibition of As(V) on immobilized ACP and cascade reaction mediated by ACP and AuHT, a colorimetric biosensor was established with excellent simplicity. After comprehensive validation, this colorimetric method presented the advantages of wide linear range (10.0-1000.0 μg/L), low LOD (4.0 μg/L), nice accuracy (recovery of 93.7-109.6 %) and good selectivity. Finally, this method was applied to visual detection of As(V) in rice samples with different varieties.
Collapse
Affiliation(s)
| | | | - Yixin Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinlin Wei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
6
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
7
|
Song X, Huang R, Zhang X, Chang Q, Kim S, Jeong D, Hou Q, Kim J, Ang EH, Su X, Feng X, Xiang H. Unveiling the Dynamic Pathways of Metal-Organic Framework Crystallization and Nanoparticle Incorporation for Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407984. [PMID: 39316295 DOI: 10.1002/advs.202407984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Metal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium-sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xingyu Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Semi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Daeun Jeong
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Qian Hou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Xiaowei Su
- Anhui Honghai New Materials Co., Ltd, Anqing, Anhui, 246100, P. R. China
| | - Xuyong Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
8
|
Li R, Wu Z, Liu X, Chen H, Li X, Fan D, Wu Z. Increasing Multienzyme Cascade Efficiency and Stability of MOF via Partitioning Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33235-33245. [PMID: 38885355 DOI: 10.1021/acsami.4c07487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Enhancing the stability of multienzyme cascade reactions in metal-organic frameworks (MOFs) is a challenging task in the fields of biotechnology and chemistry. However, addressing this challenge could yield far-reaching benefits across the application range in the biomedical, food, and environmental sectors. In this study, multienzyme partitioning immobilization that sequentially immobilizes cascade enzymes with hierarchical MOFs is proposed to reduce substrate diffusion resistance. Conversion results of ginsenosides indicate that this strategy improves the cascade efficiency up to 1.26 times. The substrate diffusion model is used to investigate the dual-interenzyme mass transfer behavior of substrates in the restricted domain space and evaluate the substrate channeling effect under partitioning immobilization. Molecular docking and kinetic simulations reveal that the MOFs effectively limit the conformational changes of cascade enzymes at high temperatures and in organic solvents while maintaining a large pocket of active centers. This phenomenon increased efficient substrate docking to the enzyme molecules, further optimizing cascade efficiency. The results of the immobilization of GOX and horseradish peroxidase as model enzymes indicate that the partitioned MOF immobilization strategy could be used for universal adaptation of cascade enzymes.
Collapse
Affiliation(s)
- Runze Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Hongxiu Chen
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xue Li
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Daidi Fan
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
9
|
Xing X, Cheng W, Zhou S, Liu H, Wu Z. Recent advances in small-angle scattering techniques for MOF colloidal materials. Adv Colloid Interface Sci 2024; 329:103162. [PMID: 38761601 DOI: 10.1016/j.cis.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/20/2024]
Abstract
This paper reviews the recent progress of small angle scattering (SAS) techniques, mainly including X-ray small angle scattering technique (SAXS) and neutron small angle scattering (SANS) technique, in the study of metal-organic framework (MOF) colloidal materials (CMOFs). First, we introduce the application research of SAXS technique in pristine MOFs materials, and review the studies on synthesis mechanism of MOF materials, the pore structures and fractal characteristics, as well as the spatial distribution and morphological evolution of foreign molecules in MOF composites and MOF-derived materials. Then, the applications of SANS technique in MOFs are summarized, with emphasis on SANS data processing method, structure modeling and quantitative structural information extraction. Finally, the characteristics and developments of SAS techniques are commented and prospected. It can be found that most studies on MOF materials with SAS techniques focus mainly on nanoporous structure characterization and the evolution of pore structures, or the spatial distribution of other foreign molecules loaded in MOFs. Indeed, SAS techniques take an irreplaceable role in revealing the structure and evolution of nanopores in CMOFs. We expect that this paper will help to understand the research status of SAS techniques on MOF materials and better to apply SAS techniques to conduct further research on MOF and related materials.
Collapse
Affiliation(s)
- Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Cheng
- College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Shuming Zhou
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyan Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Xu L, Geng X, Li Q, Li M, Chen S, Liu X, Dai X, Zhu X, Wang X, Suo H. Calcium-based MOFs as scaffolds for shielding immobilized lipase and enhancing its stability. Colloids Surf B Biointerfaces 2024; 237:113836. [PMID: 38479261 DOI: 10.1016/j.colsurfb.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
The enzyme immobilization technology has become a key tool in the field of enzyme applications; however, improving the activity recovery and stability of the immobilized enzymes is still challenging. Herein, we employed a magnetic carboxymethyl cellulose (MCMC) nanocomposite modified with ionic liquids (ILs) for covalent immobilization of lipase, and used Ca-based metal-organic frameworks (MOFs) as the support skeleton and protective layer for immobilized enzymes. The ILs contained long side chains (eight CH2 units), which not only enhanced the hydrophobicity of the carrier and its hydrophobic interaction with the enzymes, but also provided a certain buffering effect when the enzyme molecules were subjected to compression. Compared to free lipase, the obtained CaBPDC@PPL-IL-MCMC exhibited higher specific activity and enhanced stability. In addition, the biocatalyst could be easily separated using a magnetic field, which is beneficial for its reusability. After 10 cycles, the residual activity of CaBPDC@PPL-IL-MCMC could reach up to 86.9%. These features highlight the good application prospects of the present immobilization method.
Collapse
Affiliation(s)
- Lili Xu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyue Geng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qi Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Moju Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shu Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiangnan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xusheng Dai
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiuhuan Zhu
- Liaocheng Customs of the People's Republic of China, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
11
|
Jabeen R, Ali N, Tajwar MA, Liu Y, Luo D, Li D, Qi L. Encapsulation of an enzyme-immobilized smart polymer membrane in a metal-organic framework for enhancement of catalytic performance. J Mater Chem B 2024; 12:3996-4003. [PMID: 38563677 DOI: 10.1039/d4tb00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Encapsulation of enzymes within porous materials has shown great promise for protecting enzymes from denaturation, increasing their tolerance to harsh environments and promoting their industrialization. However, controlling the conformational freedom of the encapsulated enzymes to enhance their catalytic performance remains a great challenge. To address this issue, herein, following immobilization of GOx and HRP on a thermo-responsive porous poly(styrene-maleic-anhydride-N-isopropylacrylamide) (PSMN) membrane, a GOx-HRP@PSMN@HZIF-8 composite was fabricated by encapsulating GOx-HRP@PSMN in hollow ZIF-8 (HZIF-8) with liposome (L) as the sacrificial template. The improved conformational freedom for enzymes arising from the hollow cavity formed in ZIF-8 through the removal of L enhanced the mass transfer and dramatically promoted the catalytic activity of the composite. Interestingly, at high temperature, the coiled PN moiety in PSMN provided the confinement effect for GOx-HRP, which also significantly boosted the catalytic performance of the composites. Compared to the maximum catalytic reaction rates (Vmax) of GOx-HRP@PSMN@LZIF-8, the free enzyme and GOx-HRP@ZIF-8, the Vmax of the GOx-HRP@PSMN@HZIF-8 composite exhibited an impressive 17.8-fold, 10.8-fold and 6.0-fold enhancement at 37 °C, respectively. The proposed composites successfully demonstrated their potential as catalytic platforms for the colorimetric detection of glucose in a cascade reaction. This study paves a new way for overcoming the current limitations of immobilizing enzymes in porous materials and the use of smart polymers for the potential fabrication of enzyme@polymer@MOF composites with tunable conformational freedom and confinement effect.
Collapse
Affiliation(s)
- Rubina Jabeen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nasir Ali
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Ali Tajwar
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yutong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Dong Luo
- College of Chemistry and Material Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | - Dan Li
- College of Chemistry and Material Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Weng Y, Chen R, Hui Y, Chen D, Zhao CX. Boosting Enzyme Activity in Enzyme Metal-Organic Framework Composites. CHEM & BIO ENGINEERING 2024; 1:99-112. [PMID: 38566967 PMCID: PMC10983012 DOI: 10.1021/cbe.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.
Collapse
Affiliation(s)
- Yilun Weng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rui Chen
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Yue Hui
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- State
Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310003, China
| | - Chun-Xia Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Guo M, Tian S, Wang W, Xie L, Xu H, Huang K. Biomimetic leaves with immobilized catalase for machine learning-enabled validating fresh produce sanitation processes. Food Res Int 2024; 179:114028. [PMID: 38342546 DOI: 10.1016/j.foodres.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Washing and sanitation are vital steps during the postharvest processing of fresh produce to reduce the microbial load on the produce surface. Although current process control and validation tools effectively predict sanitizer concentrations in wash water, they have significant limitations in assessing sanitizer effectiveness for reducing microbial counts on produce surfaces. These challenges highlight the urgent need to improve the validation of sanitation processes, especially considering the presence of dynamic organic contaminants and complex surface topographies. This study aims to provide the fresh produce industry with a novel, reliable, and highly accurate method for validating the sanitation efficacy on the produce surface. Our results demonstrate the feasibility of using a food-grade, catalase (CAT)-immobilized biomimetic leaf in combination with vibrational spectroscopy and machine learning to predict microbial inactivation on microgreen surfaces. This was tested using two sanitizers: sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2). The developed CAT-immobilized leaf-replicated PDMS (CAT@L-PDMS) effectively mimics the microscale topographies and bacterial distribution on the leaf surface. Alterations in the FTIR spectra of CAT@L-PDMS, following simulated sanitation processes, indicate chemical changes due to CAT oxidation induced by NaClO or H2O2 treatments, facilitating the subsequent machine learning modeling. Among the five algorithms tested, the competitive adaptive reweighted sampling partial least squares discriminant analysis (CARS-PLSDA) algorithm was the most effective for classifying the inactivation efficacy of E. coli on microgreen leaf surfaces. It predicted bacterial reduction on microgreen surfaces with 100% accuracy in both training and prediction sets for NaClO, and 95% in the training set and 86% in the prediction set for H2O2. This approach can improve the validation of fresh produce sanitation processes and pave the way for future research.
Collapse
Affiliation(s)
- Minyue Guo
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shijie Tian
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huirong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Kang Huang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
14
|
Ren H, Yuan J, Li YM, Li WJ, Guo YH, Zhang YB, Wang BH, Ma K, Peng L, Hu G, Wang WQ, He H, Chou LY, Zeng MH, Zhang YB, Cheng L. Highly Enantioselective Catalysis by Enzyme Encapsulated in Metal Azolate Frameworks with Micelle-Controlled Pore Sizes. ACS CENTRAL SCIENCE 2024; 10:358-366. [PMID: 38435533 PMCID: PMC10906037 DOI: 10.1021/acscentsci.3c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (Kcat/Km) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.
Collapse
Affiliation(s)
- Hao Ren
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian Yuan
- Avogadral
Solutions, 3130 Grants
Lake Boulevard #18641, Sugar Land, Texas 77496, United States
| | - Yi-Ming Li
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- School
of Chemistry and Chemical Engineering, Anhui
University, Hefei 230601, China
| | - Wen-Jing Li
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yi-Hang Guo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fujian 350002, China
- School
of
Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Yi-Bo Zhang
- School
of
Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Bing-Hao Wang
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kaili Ma
- Analysis
and Testing Center, Southeast University, Nanjing 211189, China
| | - Lu Peng
- Analysis
and Testing Center, Southeast University, Nanjing 211189, China
| | - Guping Hu
- School
of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen-Qi Wang
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hailong He
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lien-Yang Chou
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ming-Hua Zeng
- School
of
Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Yue-Biao Zhang
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lin Cheng
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
15
|
Yong J, Hakobyan K, Xu J, Mellick AS, Whitelock J, Liang K. Comparison of protein quantification methods for protein encapsulation with ZIF-8 metal-organic frameworks. Biotechnol J 2023; 18:e2300015. [PMID: 37436154 DOI: 10.1002/biot.202300015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
The use of metal-organic frameworks (MOFs) as delivery systems for biologically functional macromolecules has been explored widely in recent years due to their ability to protect their payload from a wide range of harsh conditions. Given the wide usage and diversity of potential applications, optimising the encapsulation efficiency by MOFs for different biological is of particular importance. Here, several protein quantitation methods and report were compared on the accuracy, practicality, limitations, and sensitivity of these methods to assess the encapsulation efficiency of zeolitic imidazolate frameworks (ZIF)-8 MOFs for two common biologicals commonly used in nanomedicine, bovine serum albumin (BSA), and the enzyme catalase (CAT). Using these methods, ZIF-8 encapsulation of BSA and CAT was confirmed to enrich for high molecular weight and glycosylated protein forms. However, contrary to most reports, a high degree of variance was observed across all methods assessed, with fluorometric quantitation providing the most consistent results with the lowest background and greatest dynamic range. While bicinchoninic acid (BCA) assay has showed greater detection range than the Bradford (Coomassie) assay, BCA and Bradford assays were found to be susceptible to background from the organic "MOF" linker 2-methylimidazole, reducing their overall sensitivity. Finally, while very sensitive and useful for assessing protein quality SDS-PAGE is also susceptible to confounding artifacts and background. Given the increasing use of enzyme delivery using MOFs, and the diversity of potential uses in biomedicine, identifying a rapid and efficient method of assessing biomolecule encapsulation is key to their wider acceptance.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Karen Hakobyan
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jiangtao Xu
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
16
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
17
|
Yan Y, Guo L, Geng H, Bi S. Hierarchical Porous Metal-Organic Framework as Biocatalytic Microreactor for Enzymatic Biofuel Cell-Based Self-Powered Biosensing of MicroRNA Integrated with Cascade Signal Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301654. [PMID: 37098638 DOI: 10.1002/smll.202301654] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Enzymatic biofuel cells have become powerful tools in biosensing, which however generally suffer from the limited loading efficiency as well as low catalytic activity and poor stability of bioenzymes. Herein, the hierarchical porous metal-organic frameworks (MOFs) are synthesized using tannic acid (TA) for structural etching, which realizes co-encapsulation of glucose dehydrogenase (GDH) and nicotinamide adenine dinucleotide (NAD+ ) cofactor in zeolitic imidazolate framework (ZIF-L) and are further used as the biocatalytic microreactors to modify bioanode. In this work, the TA-controlled etching can not only expand the pore size of microreactors, but also achieve the reorientation of enzymes in their lower surface energy form, therefore enhancing the biocatalysis of cofactor-dependent enzyme. Meanwhile, the topological DNA tetrahedron is assembled on the microreactors, which acts as the microRNA-responsive "lock" to perform the cascade signal amplification of exonuclease III-assisted target recycling on bioanode and hybridization chain reaction (HCR) on biocathode. The proposed self-powered biosensor has achieved a detection limit as low as 2 aM (6 copies miRNA-21 in a 5 µL of sample), which is further successfully applied to identify cancer cells and clinical serums of breast cancer patients based on the different levels of miRNA-21, holding great potential in accurate disease identification and clinical diagnosis.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Li Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongyan Geng
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
18
|
Zhang Y, Xing C, Mu Z, Niu Z, Feng X, Zhang Y, Wang B. Harnessing Self-Repairing and Crystallization Processes for Effective Enzyme Encapsulation in Covalent Organic Frameworks. J Am Chem Soc 2023. [PMID: 37285591 DOI: 10.1021/jacs.3c04183] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Immobilization of fragile enzymes in crystalline porous materials offers new opportunities to expand the applications of biocatalysts. However, limited by the pore size and/or harsh synthesis conditions of the porous hosts, enzymes often suffer from dimension limitation or denaturation during the immobilization process. Taking advantage of the dynamic covalent chemistry feature of covalent organic frameworks (COFs), herein, we report a preprotection strategy to encapsulate enzymes in COFs during the self-repairing and crystallization process. Enzymes were first loaded in the low-crystalline polymer networks with mesopores formed at the initial growth stage, which could offer effective protection for enzymes from the harsh reaction conditions, and subsequently the encapsulation proceeded during the self-repairing and crystallization of the disordered polymer into the crystalline framework. Impressively, the biological activity of the enzymes can be well-maintained after encapsulation, and the obtained enzyme@COFs also show superior stability. Furthermore, the preprotection strategy circumvents the size limitation for enzymes, and its versatility was verified by enzymes with different sizes and surface charges, as well as a two-enzyme cascade system. This study offers a universal design idea to encapsulate enzymes in robust porous supports and holds promise for developing high-performance immobilized biocatalysts.
Collapse
Affiliation(s)
- Yufeng Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenjie Mu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziru Niu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
19
|
Fernando D, Mathesh M, Cai J, Yang W. In Situ Immobilization of Multi-Enzymes for Enhanced Substrate Channeling of Enzyme Cascade Reactions: A Nanoarchitectonics Approach by Directed Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37229646 DOI: 10.1021/acs.langmuir.3c00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rationally tailoring a controlled spatial organization of enzymes in a nanoarchitecture for multi-enzyme cascade reactions can enhance the catalytic efficiency via substrate channeling. However, attaining substrate channeling is a grand challenge, requiring sophisticated techniques. Herein, we report facile polymer-directed metal-organic framework (MOF)-based nanoarchitechtonics for realizing a desirable enzyme architecture with significantly enhanced substrate channeling. The new method involves the use of poly(acrylamide-co-diallyldimethylammonium chloride) (PADD) as a modulator in a one-step process for simultaneous MOF synthesis and co-immobilization of enzymes (GOx and HRP). The resultant enzymes-PADD@MOFs constructs showed a closely packed nanoarchitecture with enhanced substrate channeling. A transient time close to 0 s was observed, owing to a short diffusion path for substrates in a 2D spindle-shaped structure and their direct transfer from one enzyme to another. This enzyme cascade reaction system showed a 3.5-fold increase in catalytic activity in comparison to free enzymes. The findings provide a new insight into using polymer-directed MOF-based enzyme nanoarchitectures to improve catalytic efficiency and selectivity.
Collapse
Affiliation(s)
- Dulini Fernando
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Motilal Mathesh
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Jackie Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
20
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Shao Y, Zhou Y, Chen N, Xu W, Zhou H, Lai W, Huang X, Xiang X, Ye Q, Zhang J, Wang J, Parak WJ, Wu Q, Ding Y. Synthesizing Submicron Polyelectrolyte Capsules to Boost Enzyme Immobilization and Enhance Enzyme-Based Immunoassays. ACS OMEGA 2023; 8:12393-12403. [PMID: 37033870 PMCID: PMC10077544 DOI: 10.1021/acsomega.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Polyelectrolyte capsules (PCs) exhibit attractive superiorities in enzyme immobilization, including providing a capacious microenvironment for enzyme conformational freedom, highly effective mass transfer, and protecting enzymes from the external environment. Herein, we provide the first systemic evaluation of submicron PCs (SPCs, 500 nm) for enzyme immobilization. The catalytic kinetics results show that SPC encapsulation affected the affinities of enzymes and substrates but significantly enhanced their catalytic activity. The stability test indicates that SPC-encapsulated horseradish peroxidase (HRP) exhibits ultrahigh resistance to external harsh conditions and has a longer storage life than that of soluble HRP. The proposed encapsulation strategy enables 7.73-, 2.22-, and 11.66-fold relative activities when working at a pH as low as 3, at a NaCl concentration as high as 500 mM, and at a trypsin concentration as high as 10 mg/mL. We find that SPC encapsulation accelerates the cascade reaction efficiency of HRP and glucose oxidase. Owing to SPCs enhancing the catalytic activity of the loaded enzymes, we established an amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Escherichia coli O157:H7 using HRP-loaded SPCs. The detection sensitivity of SPC-improved ELISA was found to be 280 times greater than that of conventional HRP-based ELISA. Altogether, we provide an elaborate evaluation of 500 nm SPCs on enzyme immobilization and its application in the ultrasensitive detection of foodborne pathogens. This evaluation provides evidence to reveal the potential advantage of SPCs on enzyme immobilization for enzyme-based immunoassays. It has excellent biological activity and strong stability and broadens the application prospect in urine, soy sauce, sewage, and other special samples.
Collapse
Affiliation(s)
- Yanna Shao
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaofeng Zhou
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Nuo Chen
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenxing Xu
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huan Zhou
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weihua Lai
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xinran Xiang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College
of Food Science, South China Agricultural
University, Guangzhou 510432, China
| | - Wolfgang J. Parak
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Qingping Wu
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Murty R, Bera MK, Walton IM, Whetzel C, Prausnitz MR, Walton KS. Interrogating Encapsulated Protein Structure within Metal-Organic Frameworks at Elevated Temperature. J Am Chem Soc 2023; 145:7323-7330. [PMID: 36961883 PMCID: PMC10080685 DOI: 10.1021/jacs.2c13525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Encapsulating biomacromolecules within metal-organic frameworks (MOFs) can confer thermostability to entrapped guests. It has been hypothesized that the confinement of guest molecules within a rigid MOF scaffold results in heightened stability of the guests, but no direct evidence of this mechanism has been shown. Here, we present a novel analytical method using small-angle X-ray scattering (SAXS) to solve the structure of bovine serum albumin (BSA) while encapsulated within two zeolitic imidazolate frameworks (ZIF-67 and ZIF-8). Our approach comprises subtracting the scaled SAXS spectrum of the ZIF from that of the biocomposite BSA@ZIF to determine the radius of gyration of encapsulated BSA through Guinier, Kratky, and pair distance distribution function analyses. While native BSA exposed to 70 °C became denatured, in situ SAXS analysis showed that encapsulated BSA retained its size and folded state at 70 °C when encapsulated within a ZIF scaffold, suggesting that entrapment within MOF cavities inhibited protein unfolding and thus denaturation. This method of SAXS analysis not only provides insight into biomolecular stabilization in MOFs but may also offer a new approach to study the structure of other conformationally labile molecules in rigid matrices.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ian M Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina Whetzel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Wang Q, Guan Z, Xiong Y, Li D. Nanoconfinement-enhanced Fenton-like polymerization via hollow hetero-shell carbon for reducing carbon emissions in organic wastewater purification. J Colloid Interface Sci 2023; 634:231-242. [PMID: 36535161 DOI: 10.1016/j.jcis.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lower reaction speed and excessive oxidant inputs impede the removal of contaminants from water via the advanced oxidation processes based on peroxymonosulfate. Herein, we report a new confined catalysis paradigm via the hollow hetero-shell structured CN@C (H-CN@C), which permits effective decontamination through polymerization with faster reaction rates and lower oxidant dosage. The confined space structures regulated the CN and CO and electron density of the inner shell, which increased the electron transfer rate and mass transfer rate. As a result, CN in H-CN@C-10 reacted with peroxymonosulfate in preference to CO to generate singlet oxygen, improving the second-order reaction kinetics by 503 times. The identification of oxidation products implied that bisphenol AF could effectively remove by polymerization, which could reduce carbon dioxide emissions. These favorable properties make the nanoconfined catalytic polymerization of contaminants a remarkably promising nanocatalytic water purification technology.
Collapse
Affiliation(s)
- Qihui Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Yi Xiong
- School of Mathematical & Physical Sciences, Department of Microelectronics, Wuhan, Hubei 430073, China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China.
| |
Collapse
|
24
|
Yang J, Huang W, Zhang W, Wei K, Pan B, Zhang S. Using Defect Control To Break the Stability-Activity Trade-Off in Enzyme Immobilization via Competitive Coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2312-2321. [PMID: 36720635 DOI: 10.1021/acs.langmuir.2c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immobilization of enzymes within metal-organic frameworks is a powerful strategy to enhance the long-term usability of labile enzymes. However, the thus-confined enzymes suffer from the trade-off between enhanced stability and reduced activity because of the contradiction between the high crystallinity and the low accessibility. Here, by taking laccase and zeolitic imidazolate framework-8 (ZIF-8) as prototypes, we disclosed an observation that the stability-activity trade-off could be solved by controlling the defects via competitive coordination. Owing to the presence of competitive coordination between laccase and the ligand precursor of ZIF-8, there existed a three-stage process in the de novo encapsulation: nucleation-crystallization-recrystallization. Our results show that the biocomposites collected before the occurrence of recrystallization possessed both increased activity and enhanced stability. The findings here shed new light on the control of defects through the subtle use of competitive coordination, which is of great significance for the engineering application of biomacromolecules.
Collapse
Affiliation(s)
- Jianghua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wenguang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wentao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Kunrui Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
25
|
Zha X, Zhao X, Webb E, Khan SU, Wang Y. Beyond Pristine Metal-Organic Frameworks: Preparation of Hollow MOFs and Their Composites for Catalysis, Sensing, and Adsorption Removal Applications. Molecules 2022; 28:144. [PMID: 36615337 PMCID: PMC9821992 DOI: 10.3390/molecules28010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Metal-organic frameworks (MOFs) have been broadly applied to numerous domains with a substantial surface area, tunable pore size, and multiple unsaturated metal sites. Recently, hollow MOFs have greatly attracted the scientific community due to their internal cavities and gradient pore structures. Hollow MOFs have a higher tunability, faster mass-transfer rates, and more accessible active sites when compared to traditional, solid MOFs. Hollow MOFs are also considered to be candidates for some functional material carriers. For example, composite materials such as hollow MOFs and metal nanoparticles, metal oxides, and enzymes have been prepared. These composite materials integrate the characteristics of hollow MOFs with functional materials and are broadly used in many aspects. This review describes the preparation strategies of hollow MOFs and their composites as well as their applications in organic catalysis, electrochemical sensing, and adsorption separation. Finally, we hope that this review provides meaningful knowledge about hollow-MOF composites and their derivatives and offers many valuable references to develop hollow-MOF-based applied materials.
Collapse
Affiliation(s)
- Xiaoqian Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Shifa Ullah Khan
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, Punjab 56300, Pakistan
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
26
|
Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, Li N, Zhang Z, Chen Y. Green and Scalable Fabrication of High‐Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angew Chem Int Ed Engl 2022; 61:e202208744. [DOI: 10.1002/anie.202208744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Yunlong Zheng
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Sainan Zhang
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Ruixuan Shi
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Jiangyue Yu
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Kaipeng Li
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| |
Collapse
|
28
|
Huang W, Yuan H, Yang H, Tong L, Gao R, Kou X, Wang J, Ma X, Huang S, Zhu F, Chen G, Ouyang G. Photodynamic Hydrogen-Bonded Biohybrid Framework: A Photobiocatalytic Cascade Nanoreactor for Accelerating Diabetic Wound Therapy. JACS AU 2022; 2:2048-2058. [PMID: 36186550 PMCID: PMC9516711 DOI: 10.1021/jacsau.2c00321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
A diabetic wound causes thousands of infections or deaths around the world each year, and its healing remains a critical challenge because of the ease of multidrug-resistant (MDR) bacterial infection, as well as the intrinsic hyperglycemic and hypoxia microenvironment that inhibits the therapeutic efficiency. Herein, we pioneer the design of a photobiocatalytic cascade nanoreactor via spatially organizing the biocatalysts and photocatalysts utilizing a hydrogen-bonded organic framework (HOF) scaffold for diabetic wound therapy. The HOF scaffold enables it to disperse and stabilize the host cargos, and the formed long-range-ordered mesochannels also facilitate the mass transfer that enhances the cascade activity. This integrated HOF nanoreactor allows the continuous conversion of overexpressed glucose and H2O2 into toxic reactive oxygen species by the photobiocatalytic cascade. As a result, it readily reverses the microenvironment of the diabetes wound and exhibits an extraordinary capacity for wound healing through synergistic photodynamic therapy. This work describes the first example of constructing an all-in-one HOF bioreactor for antimicrobial diabetes wound treatment and showcases the promise of combined biocatalysis and photocatalysis achieved by using an HOF scaffold in biomedicine applications.
Collapse
Affiliation(s)
- Wei Huang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Haitao Yuan
- Department
of Geriatric Medicine, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Huangsheng Yang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Linjing Tong
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Gao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jigang Wang
- Department
of Geriatric Medicine, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Xiaomin Ma
- Cryo-EM
Center, Southern University of Science and
Technology, Shenzhen 518055, China
| | - Siming Huang
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Molecular Target
and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Fang Zhu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
29
|
Tai T, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure–Property Relationships of Protein Immobilization in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202209110. [DOI: 10.1002/anie.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu‐Yi Tai
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Satoshi Kato
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
30
|
Liang J, Bin Zulkifli MY, Yong J, Du Z, Ao Z, Rawal A, Scott JA, Harmer JR, Wang J, Liang K. Locking the Ultrasound-Induced Active Conformation of Metalloenzymes in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:17865-17875. [PMID: 36075889 DOI: 10.1021/jacs.2c06471] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing the enzymatic activity inside metal-organic frameworks (MOFs) is a critical challenge in chemical technology and bio-technology, which, if addressed, will broaden their scope in energy, food, environmental, and pharmaceutical industries. Here, we report a simple yet versatile and effective strategy to optimize biocatalytic activity by using MOFs to rapidly "lock" the ultrasound (US)-activated but more fragile conformation of metalloenzymes. The results demonstrate that up to 5.3-fold and 9.3-fold biocatalytic activity enhancement of the free and MOF-immobilized enzymes could be achieved compared to those without US pretreatment, respectively. Using horseradish peroxidase as a model, molecular dynamics simulation demonstrates that the improved activity of the enzyme is driven by an opened gate conformation of the heme active site, which allows more efficient substrate binding to the enzyme. The intact heme active site is confirmed by solid-state UV-vis and electron paramagnetic resonance, while the US-induced enzyme conformation change is confirmed by circular dichroism spectroscopy and Fourier-transform infrared spectroscopy. In addition, the improved activity of the biocomposites does not compromise their stability upon heating or exposure to organic solvent and a digestion cocktail. This rapid locking and immobilization strategy of the US-induced active enzyme conformation in MOFs gives rise to new possibilities for the exploitation of highly efficient biocatalysts for diverse applications.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Muhammad Yazid Bin Zulkifli
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Zeping Du
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, New South Wale Australia
| | - Jason A Scott
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Queensland Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla 92093, California, United States
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wale, Australia
| |
Collapse
|
31
|
Immunoassay based on urease-encapsulated metal-organic framework for sensitive detection of foodborne pathogen with pH meter as a readout. Mikrochim Acta 2022; 189:358. [PMID: 36040541 DOI: 10.1007/s00604-022-05462-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
The potential of enzyme-encapsulated metal-organic framework (MOF) as an antibody label for the construction of enzyme-linked immunosorbent assay (ELISA) is demonstrated. Zeolitic imidazolate framework-90 (ZIF-90) was employed as a MOF model to load urease and pig immunoglobulin G (IgG) antibody. This leads to the production of U@ZIF-90/IgG composite, in which urease was encapsulated in ZIF-90 to form U@ZIF-90 for amplifying the detection signal, while IgG was anchored on the surface of U@ZIF-90 for specifically recognizing Staphylococcus aureus (S. aureus). Benefiting from the unique porous structure of ZIF-90, the U@ZIF-90 not only allows urease to be encapsulated with an ultrahigh loading efficiency, but also shields the loaded urease against harsh environments. The U@ZIF-90 shows a threefold higher catalytic activity than free urease due to the confinement effect. These findings lead to an ELISA with greatly enhanced sensitivity for S. aureus detection. By using a portable pH meter as a readout, the ELISA has a linear response that covers 10 to 109 CFU/mL S. aureus with a detection limit of 1.96 CFU/mL and exhibits high selectivity over other bacteria. The successful determination of S. aureus in milk samples demonstrates the applicability of the ELISA in a complex biological matrix.
Collapse
|
32
|
Weng Y, Chen H, Chen X, Yang H, Chen CH, Tan H. Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection. Nat Commun 2022; 13:4712. [PMID: 35953495 PMCID: PMC9372092 DOI: 10.1038/s41467-022-32453-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The prodrug approach has emerged as a promising solution to combat bacterial resistance and enhance treatment efficacy against bacterial infections. Here, we report an adenosine triphosphate (ATP)-activated prodrug system for on-demand treatment of bacterial infection. The prodrug system benefits from the synergistic action of zeolitic imidazolate framework-8 and polyacrylamide hydrogel microsphere, which simultaneously transports indole-3-acetic acid and horseradish peroxidase in a single carrier while preventing the premature activation of indole-3-acetic acid. The ATP-responsive characteristic of zeolitic imidazolate framework-8 allows the prodrug system to be activated by the ATP secreted by bacteria to generate reactive oxygen species (ROS), displaying exceptional broad-spectrum antimicrobial ability. Upon disruption of the bacterial membrane by ROS, the leaked intracellular ATP from dead bacteria can accelerate the activation of the prodrug system to further enhance antibacterial efficiency. In vivo experiments in a mouse model demonstrates the applicability of the prodrug system for wound disinfection with minimal side effects. Prodrugs are increasingly promising in tackling bacterial resistance and efficacy of treatment. Here, the authors encapsulated horseradish peroxidase and zeolitic imidazolate framework-8 loaded with indole-3-acetic acid in polyacrylamide hydrogel microspheres for ATP-activated wound disinfection.
Collapse
Affiliation(s)
- Yuhao Weng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Huihong Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Xiaoqian Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Huilin Yang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Hongliang Tan
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| |
Collapse
|
33
|
Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, Li N, Zhang Z, Chen Y. Green and Scalable Fabrication of High‐Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | - Kaipeng Li
- Nankai University College of Pharmacy CHINA
| | - Ning Li
- Nankai University College of Pharmacy CHINA
| | - Zhenjie Zhang
- Nankai University College of Chemistry Weijin Road 94# 300071 Tianjin CHINA
| | - Yao Chen
- Nankai University State Key Laboratory of Medicinal Chemical Biology, Nankai University Weijin Road 94# Tianjin CHINA
| |
Collapse
|
34
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
35
|
Tai TY, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure‐Property Relationships of Protein Immobilization in Metal‐Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tzu-Yi Tai
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Fanrui Sha
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xiaoliang Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xingjie Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kaikai Ma
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kent O. Kirlikovali
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Shengyi Su
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Timur Islamoglu
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Satoshi Kato
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Omar K Farha
- Northwestern University Chemistry 2145 sheridan rd 60208 Evanston UNITED STATES
| |
Collapse
|
36
|
Zhou G, Li M. Near-Infrared-II Plasmonic Trienzyme-Integrated Metal-Organic Frameworks with High-Efficiency Enzyme Cascades for Synergistic Trimodal Oncotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200871. [PMID: 35429080 DOI: 10.1002/adma.202200871] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Natural enzyme-based catalytic cascades hold great promise for cancer therapy, but their clinical utility is greatly hindered by the loss of their functions during in vivo delivery. Herein, a plasmonic trienzyme-integrated metal-organic framework (plasEnMOF) nanoplatform with high-efficiency enzyme cascades is reported for synergistic starvation, chemodynamic, and plasmonic hyperthermia trimodal therapy of hypoxic tumors. These plasEnMOFs are created with encapsulation of near-infrared-II (NIR-II) plasmonic Au nanorods and natural enzymes-catalase (CAT), glucose oxidase (GOx), and horseradish peroxidase (HRP) within zeolitic imidazolate framework-8 (ZIF-8) MOFs. As a trienzyme cascade system, the plasEnMOFs effectively deplete intratumoral glucose and generate toxic reactive oxygen species (ROS) for starvation therapy and chemodynamic therapy (CDT) combined with the plasmonic hyperthermia therapy (PHT). The enhanced glucose consumption and ROS generation by the NIR-II plasmonic photothermal effect are also demonstrated. The improved chemo- and thermotolerance of the encapsulated natural enzymes within the protective ZIF-8 MOFs are evidenced. With the integrated enzyme cascades and NIR-II photothermal effects, these plasEnMOFs are demonstrated with exceptional therapeutic effects on 4T1 xenograft tumors through the combined starvation/CDT/PHT therapy. This work highlights the superiority of natural enzyme cascade systems integrated in plasmonic MOFs for high-efficiency enzymatic cancer therapy.
Collapse
Affiliation(s)
- Guangzhi Zhou
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
37
|
Chao H, Zhou Z, He W, Li M, Yuan X, Su P, Song J, Yang Y. Template-Free In Situ Encapsulation of Enzymes in Hollow Covalent Organic Framework Capsules for the Electrochemical Analysis of Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20641-20651. [PMID: 35481761 DOI: 10.1021/acsami.2c01357] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although capsule-like materials as host carriers for enzyme encapsulation have been a hot topic in recent years, creating an ideal microenvironment for enhanced enzymatic performance is still a formidable challenge. Herein, we created a template-free method to in situ encapsulate natural enzymes in hollow covalent organic framework (COF) capsules at room temperature. The COF crystallites migrated from the inner core and self-assembled at the outside walls during the inside-out Ostwald ripening process, retaining the enzymes in the cavity. The adjustable hollow structure of the enzyme@COF capsule allowed the basic vibration of the enzyme to maintain a certain degree of freedom, thus significantly enhancing the enzymatic bioactivity. The hollow enzyme@COF capsule has large mesoporous tunnels allowing the efficient transport. In addition, the enzyme encapsulated in the capsule showed superior activity and ultrahigh stability under various extreme conditions that may lead to enzyme inactivation, such as high temperature, organic solvents, chelates, and the denaturing agent. Finally, the prepared hollow GOx@COF capsule was used for electrochemical sensing of glucose in human serum, and the electrochemical sensor exhibited high selectivity and satisfactory test results. This research not only provides a new way for COFs to encapsulate enzymes but also has potential applications in biocatalysis and biosensing, making artificial organelles possible.
Collapse
Affiliation(s)
- Hao Chao
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Meng Li
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiaoyu Yuan
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
38
|
Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nat Commun 2022; 13:951. [PMID: 35177632 PMCID: PMC8854593 DOI: 10.1038/s41467-022-28615-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Crystallization of biomacromolecules-metal-organic frameworks (BMOFs) allows for orderly assemble of symbiotic hybrids with desirable biological and chemical functions in one voxel. The structure-activity relationship of this symbiotic crystal, however, is still blurred. Here, we directly identify the atomic-level structure of BMOFs, using the integrated differential phase contrast-scanning transmission electron microscopy, cryo-electron microscopy and x-ray absorption fine structure techniques. We discover an obvious difference in the nanoarchitecture of BMOFs under different crystallization pathways that was previously not seen. In addition, we find the nanoarchitecture significantly affects the bioactivity of the BMOFs. This work gives an important insight into the structure-activity relationship of BMOFs synthesized in different scenarios, and may act as a guide to engineer next-generation materials with excellent biological and chemical functions. Biomolecule-metal-organic-frameworks allow for the creation of hybrid materials with desired biological and chemical function. Here, the authors refine the structure-function relationship by identifying the atomic-layer structure of the hybrids and show differences in structure upon different crystallisation pathways.
Collapse
|
39
|
Efficient immobilization of catalase on mesoporous MIL-101 (Cr) and its catalytic activity assay. Enzyme Microb Technol 2022; 156:110005. [DOI: 10.1016/j.enzmictec.2022.110005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
40
|
Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat Commun 2022; 13:305. [PMID: 35027566 PMCID: PMC8758787 DOI: 10.1038/s41467-022-27983-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023] Open
Abstract
Biocatalytic transformations in living organisms, such as multi-enzyme catalytic cascades, proceed in different cellular membrane-compartmentalized organelles with high efficiency. Nevertheless, it remains challenging to mimicking biocatalytic cascade processes in natural systems. Herein, we demonstrate that multi-shelled metal-organic frameworks (MOFs) can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency. Encapsulating multi-enzymes with multi-shelled MOFs by epitaxial shell-by-shell overgrowth leads to 5.8~13.5-fold enhancements in catalytic efficiencies compared with free enzymes in solution. Importantly, multi-shelled MOFs can act as a multi-spatial-compartmental nanoreactor that allows physically compartmentalize multiple enzymes in a single MOF nanoparticle for operating incompatible tandem biocatalytic reaction in one pot. Additionally, we use nanoscale Fourier transform infrared (nano-FTIR) spectroscopy to resolve nanoscale heterogeneity of vibrational activity associated to enzymes encapsulated in multi-shelled MOFs. Furthermore, multi-shelled MOFs enable facile control of multi-enzyme positions according to specific tandem reaction routes, in which close positioning of enzyme-1-loaded and enzyme-2-loaded shells along the inner-to-outer shells could effectively facilitate mass transportation to promote efficient tandem biocatalytic reaction. This work is anticipated to shed new light on designing efficient multi-enzyme catalytic cascades to encourage applications in many chemical and pharmaceutical industrial processes. Mimicking multi-enzyme catalytic cascades in natural systems with spatial organization in confined structures is gaining increasing attention in the emerging field of systems chemistry. Here, the authors demonstrate that multi-shelled metal-organic frameworks can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency.
Collapse
|
41
|
Kawada S, Otsubo T, Horie T, Komoda Y, Ohmura N, Asano H, Hidema R, Suzuki H, Taniya K, Ichihashi Y, Nishiyama S. Preparation of ZIF-8-coated silica hard-shell microcapsule by semi-batch operation. CrystEngComm 2022. [DOI: 10.1039/d2ce00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The semi-batch operation effectively fabricated the ZIF-8 cover layer on silica hard-shell microcapsules.
Collapse
Affiliation(s)
- Shuei Kawada
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takumu Otsubo
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takafumi Horie
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiyuki Komoda
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Naoto Ohmura
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hitoshi Asano
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ruri Hidema
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Suzuki
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Keita Taniya
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuichi Ichihashi
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Satoru Nishiyama
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
42
|
Shen H, Shi H, Yang Y, Song J, Ding C, Yu S. Highly Efficient Synergistic Biocatalysis Driven by Stably Loaded Enzymes within Hierarchically Porous Iron/Cobalt Metal-Organic Framework via Biomimetic Mineralization. J Mater Chem B 2022; 10:1553-1560. [DOI: 10.1039/d1tb02596a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of multimodal chemo-/bio-catalysis for efficient cascade reactions has long provided broad prospects in the field of biotechnology for ages. In this work, we describe the synthesis of a...
Collapse
|
43
|
Hierarchical micro- and mesoporous ZIF-8 with core-shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization. J Colloid Interface Sci 2021; 610:709-718. [PMID: 34863543 DOI: 10.1016/j.jcis.2021.11.123] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
Collapse
|
44
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
45
|
Williams BP, Lo WS, Morabito JV, Young AP, Tsung F, Kuo CH, Palomba JM, Rayder TM, Chou LY, Sneed BT, Liu XY, Lamontagne LK, Petroff CA, Brodsky CN, Yang J, Andoni I, Li Y, Zhang F, Li Z, Chen SY, Gallacher C, Li B, Tsung SY, Pu MH, Tsung CK. Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51809-51828. [PMID: 34310110 DOI: 10.1021/acsami.1c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.
Collapse
Affiliation(s)
- Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Joseph V Morabito
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Allison P Young
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Frances Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Joseph M Palomba
- U.S. Army DEVCOM Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, United States
| | - Thomas M Rayder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Brian T Sneed
- CMC Materials, 870 North Commons Drive, Aurora, Illinois 60504, United States
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Leo K Lamontagne
- SecureSeniorConnections, 7114 East Stetson Drive, Scottsdale, Arizona 85251, United States
| | - Christopher A Petroff
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Casey N Brodsky
- University of Michigan Medical School, 7300 Medical Sciences Building I-A Wing, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Furui Zhang
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhehui Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yu Chen
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Connor Gallacher
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Banruo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yuan Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Ming-Hwa Pu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
46
|
Hsu PH, Chang CC, Wang TH, Lam PK, Wei MY, Chen CT, Chen CY, Chou LY, Shieh FK. Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52014-52022. [PMID: 34232015 DOI: 10.1021/acsami.1c09052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A zinc-based metal organic framework, Zn-MOF-74, which has a unique one-dimensional (1D) channel and nanoscale aperture size, was rapidly obtained in 10 min using a de novo mild water-based system at room temperature, which is an example of green and sustainable chemistry. First, catalase (CAT) enzyme was encapsulated into Zn-MOF-74 (denoted as CAT@Zn-MOF-74), and comparative assays of biocatalysis, size-selective protection, and framework-confined effects were investigated. Electron microscopy and powder X-ray diffraction were used for characterization, while electrophoresis and confocal microscopy confirmed the immobilization of CAT molecules inside the single hexagonal MOF crystals at loading of ∼15 wt %. Furthermore, the CAT@Zn-MOF-74 hybrid was exposed to a denaturing reagent (urea) and proteolytic conditions (proteinase K) to evaluate its efficacy. The encapsulated CAT maintained its catalytic activity in the decomposition of hydrogen peroxide (H2O2), even when exposed to 0.05 M urea and proteinase K, yielding an apparent observed rate constant (kobs) of 6.0 × 10-2 and 6.6 × 10-2 s-1, respectively. In contrast, free CAT exhibited sharply decreased activity under these conditions. Additionally, the bioactivity of CAT@Zn-MOF-74 for H2O2 decomposition was over three times better than that of the biocomposites based on zeolitic imidazolate framework 90 (ZIF-90) owing to the nanometer-scaled apertures, 1D channel, and less confinement effects in Zn-MOF-74 crystallites. To demonstrate the general applicability of this strategy, another enzyme, α-chymotrypsin (CHT), was also encapsulated in Zn-MOF-74 (denoted as CHT@Zn-MOF-74) for action against a substrate larger than H2O2. In particular, CHT@Zn-MOF-74 demonstrated a biological function in the hydrolysis of l-phenylalanine p-nitroanilide (HPNA), the activity of ZIF-90-encapsulated CHT was undetectable due to aperture size limitations. Thus, we not only present a rapid eco-friendly approach for Zn-MOF-74 synthesis but also demonstrate the broader feasibility of enzyme encapsulation in MOFs, which may help to meet the increasing demand for their industrial applications.
Collapse
Affiliation(s)
- Pei-Hsiang Hsu
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chien-Chun Chang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Tsu-Hao Wang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Phuc Khanh Lam
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Yu Wei
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Tien Chen
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
47
|
Wang H, Zheng F, Xue G, Wang Y, Li G, Tang Z. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Li YM, Yuan J, Ren H, Ji CY, Tao Y, Wu Y, Chou LY, Zhang YB, Cheng L. Fine-Tuning the Micro-Environment to Optimize the Catalytic Activity of Enzymes Immobilized in Multivariate Metal-Organic Frameworks. J Am Chem Soc 2021; 143:15378-15390. [PMID: 34478271 DOI: 10.1021/jacs.1c07107] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The artificial engineering of an enzyme's structural conformation to enhance its activity is highly desired and challenging. Anisotropic reticular chemistry, best illustrated in the case of multivariate metal-organic frameworks (MTV-MOFs), provides a platform to modify a MOF's pore and inner-surface with functionality variations on frameworks to optimize the interior environment and to enhance the specifically targeted property. In this study, we altered the functionality and ratio of linkers in zeolitic imidazolate frameworks (ZIFs), a subclass of MOFs, with the MTV approach to demonstrate a strategy that allows us to optimize the activity of the encapsulated enzyme by continuously tuning the framework-enzyme interaction through the hydrophilicity change in the pores' microenvironment. To systematically study this interaction, we developed the component-adjustment-ternary plot (CAT) method to approach the optimal activity of the encapsulated enzyme BCL and revealed a nonlinear correlation, first incremental and then decremental, between the BCL activity and the hydrophilic linker' ratios in MTV-ZIF-8. These findings indicated there is a spatial arrangement of functional groups along the three-dimensional space across the ZIF-8 crystal with a unique sequence that could change the enzyme structure between closed-lid and open-lid conformations. These conformation changes were confirmed by FTIR spectra and fluorescence studies. The optimized BCL@ZIF-8 is not only thermally and chemically more stable than free BCL in solution, but also doubles the catalytic reactivity in the kinetic resolution reaction with 99% ee of the products.
Collapse
Affiliation(s)
- Yi-Ming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jian Yuan
- Avogadral Solutions, 3130 Grants Lake Boulevard #18641, Sugar Land, Texas 77496, United States
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chun-Yan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yahui Wu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
49
|
Zhao L, Yang J, Gong M, Li K, Gu J. Specific Screening of Prostate Cancer Individuals Using an Enzyme-Assisted Substrate Sensing Platform Based on Hierarchical MOFs with Tunable Mesopore Size. J Am Chem Soc 2021; 143:15145-15151. [PMID: 34494833 DOI: 10.1021/jacs.1c05674] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid and specific identification of tumor metabolic markers is of great significance. Herein, a convenient, reliable and specific strategy was proposed to screen prostate cancer (PCa) individuals through indirectly quantifying sarcosine, an early indicator of PCa, in the clinical urine samples. The success roots in the rational design of a cascade response model, which takes integrated sarcosine oxidase (SOX) as a specific recognition unit and oxygen-sensitive molecule as a signal reporter. The newly developed hierarchical mesoporous Zr-based metal-organic frameworks with continuously tunable mesopore size ensure the synergetic work of the SOX and response unit spatially separated in their neighboring mesoporous and microporous domains, respectively. The large mesopore up to 12.1 nm not only greatly enhances the loading capacity of SOX but also spares enough space for the free diffusion of sarcosine. On this basis, the probe is competent to specifically check out the tiny concentration change of sarcosine in the urine sample between PCa patients and healthy humans. Such a concept of enzyme-assisted substrate sensing could be simply extended by altering the type of immobilized enzymes, hopefully setting a guideline for the rational design of multiple probes to quantify specific biomarkers in complex biological samples.
Collapse
Affiliation(s)
- Liwei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ke Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Cirujano FG, Dhakshinamoorthy A. Challenges and Opportunities for the Encapsulation of Enzymes over Porous Solids for Biodiesel Production and Cellulose Valorization into Glucose. ChemCatChem 2021. [DOI: 10.1002/cctc.202100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco G. Cirujano
- Institute of Molecular Science (ICMOL) Universidad de Valencia 46980 Paterna Valencia Spain
| | | |
Collapse
|