1
|
Jani H, Harrison J, Hooda S, Prakash S, Nandi P, Hu J, Zeng Z, Lin JC, Godfrey C, Omar GJ, Butcher TA, Raabe J, Finizio S, Thean AVY, Ariando A, Radaelli PG. Spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes. NATURE MATERIALS 2024; 23:619-626. [PMID: 38374414 PMCID: PMC11068574 DOI: 10.1038/s41563-024-01806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show-via transmission-based antiferromagnetic vector mapping-that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.
Collapse
Affiliation(s)
- Hariom Jani
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Jack Harrison
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Sonu Hooda
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Saurav Prakash
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Proloy Nandi
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Junxiong Hu
- Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Zhiyang Zeng
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Jheng-Cyuan Lin
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Charles Godfrey
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Ganesh Ji Omar
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Tim A Butcher
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Jörg Raabe
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Simone Finizio
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - A Ariando
- Department of Physics, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore.
| | - Paolo G Radaelli
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Sheka DD, Pylypovskyi OV, Volkov OM, Yershov KV, Kravchuk VP, Makarov D. Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105219. [PMID: 35044074 DOI: 10.1002/smll.202105219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Low-dimensional magnetic architectures including wires and thin films are key enablers of prospective ultrafast and energy efficient memory, logic, and sensor devices relying on spin-orbitronic and magnonic concepts. Curvilinear magnetism emerged as a novel approach in material science, which allows tailoring of the fundamental anisotropic and chiral responses relying on the geometrical curvature of magnetic architectures. Much attention is dedicated to magnetic wires of Möbius, helical, or DNA-like double helical shapes, which act as prototypical objects for the exploration of the fundamentals of curvilinear magnetism. Although there is a bulk number of original publications covering fabrication, characterization, and theory of magnetic wires, there is no comprehensive review of the theoretical framework of how to describe these architectures. Here, theoretical activities on the topic of curvilinear magnetic wires and narrow nanoribbons are summarized, providing a systematic review of the emergent interactions and novel physical effects caused by the curvature. Prospective research directions of curvilinear spintronics and spin-orbitronics are discussed, the fundamental framework for curvilinear magnonics are outlined, and mechanically flexible curvilinear architectures for soft robotics are introduced.
Collapse
Affiliation(s)
- Denis D Sheka
- Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
- Kyiv Academic University, Kyiv, 03142, Ukraine
| | - Oleksii M Volkov
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
| | - Kostiantyn V Yershov
- Leibniz-Institut für Festkörper- und Werkstoffforschung, IFW Dresden, 01171, Dresden, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv, 03142, Ukraine
| | - Volodymyr P Kravchuk
- Institut für Theoretische Festkörperphysik, Karlsruher Institut für Technologie, 76131, Karlsruhe, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv, 03142, Ukraine
| | - Denys Makarov
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
| |
Collapse
|
3
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
4
|
Napoli G, Pylypovskyi OV, Sheka DD, Vergori L. Nematic shells: new insights in topology- and curvature-induced effects. SOFT MATTER 2021; 17:10322-10333. [PMID: 34734955 DOI: 10.1039/d1sm00719j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrinsic curvature of the shell combined with the out-of-plane component of the director field gives rise to chirality effects. This interplay produces an effective energy term reminiscent of the chiral term in cholesteric liquid crystals, with the curvature tensor acting as a sort of anisotropic helicity. We discuss also how the different nature of the order parameter, a vector in ferromagnets and a tensor in nematics, yields different textures on surfaces with the same topology as the sphere. In particular, we show that the extrinsic curvature governs the ground state configuration on a nematic spherical shell, favouring two antipodal disclinations of charge +1 on small particles and four +1/2 disclinations of charge located at the vertices of a square inscribed in a great circle on larger particles.
Collapse
Affiliation(s)
- Gaetano Napoli
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Lecce, Italy.
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Denis D Sheka
- Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Luigi Vergori
- Dipartimento di Ingegneria, Università di Perugia, Perugia, Italy
| |
Collapse
|