1
|
Barth I, Lee H. Nanophotonic sensing and label-free imaging of extracellular vesicles. LIGHT, SCIENCE & APPLICATIONS 2025; 14:177. [PMID: 40295495 PMCID: PMC12037801 DOI: 10.1038/s41377-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
García Rodríguez B, Olsén E, Skärberg F, Volpe G, Höök F, Midtvedt DS. Optical label-free microscopy characterization of dielectric nanoparticles. NANOSCALE 2025; 17:8336-8362. [PMID: 40079204 PMCID: PMC11904879 DOI: 10.1039/d4nr03860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
In order to relate nanoparticle properties to function, fast and detailed particle characterization is needed. The ability to characterize nanoparticle samples using optical microscopy techniques has drastically improved over the past few decades; consequently, there are now numerous microscopy methods available for detailed characterization of particles with nanometric size. However, there is currently no "one size fits all" solution to the problem of nanoparticle characterization. Instead, since the available techniques have different detection limits and deliver related but different quantitative information, the measurement and analysis approaches need to be selected and adapted for the sample at hand. In this tutorial, we review the optical theory of single particle scattering and how it relates to the differences and similarities in the quantitative particle information obtained from commonly used label-free microscopy techniques, with an emphasis on nanometric (submicron) sized dielectric particles. Particular emphasis is placed on how the optical signal relates to mass, size, structure, and material properties of the detected particles and to its combination with diffusivity-based particle sizing. We also discuss emerging opportunities in the wake of new technology development, including examples of adaptable python notebooks for deep learning image analysis, with the ambition to guide the choice of measurement strategy based on various challenges related to different types of nanoparticle samples and associated analytical demands.
Collapse
Affiliation(s)
| | - Erik Olsén
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Fredrik Skärberg
- Department of Physics, University of Gothenburg, Gothenburg, Sweden.
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden.
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | | |
Collapse
|
3
|
Wallucks A, DeCorwin‐Martin P, Shen ML, Ng A, Juncker D. Size photometry and fluorescence imaging of immobilized immersed extracellular vesicles. J Extracell Vesicles 2024; 13:e12512. [PMID: 39400454 PMCID: PMC11472239 DOI: 10.1002/jev2.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Immunofluorescence analysis of individual extracellular vesicles (EVs) in common fluorescence microscopes is gaining popularity due to its accessibility and high fluorescence sensitivity; however, EV number and size are only measurable using fluorescent stains requiring extensive sample manipulations. Here we introduce highly sensitive label-free EV size photometry (SP) based on interferometric scattering (iSCAT) imaging of immersed EVs immobilized on a glass coverslip. We implement SP on a common inverted epifluorescence microscope with LED illumination and a simple 50:50 beamsplitter, permitting seamless integration of SP with fluorescence imaging (SPFI). We present a high-throughput SPFI workflow recording >10,000 EVs in 7 min over ten 88 × 88 µm2 fields of view, pre- and post-incubation imaging to suppress background, along with automated image alignment, aberration correction, spot detection and EV sizing. We achieve an EV sizing range from 37 to ∼220 nm in diameter with a dual 440 and 740 nm SP illumination scheme, and suggest that this range can be extended by more advanced image analysis or additional hardware customization. We benchmark SP to flow cytometry using calibrated silica nanoparticles and demonstrate superior, label-free sensitivity. We showcase SPFI's potential for EV analysis by experimentally distinguishing surface and volumetric EV dyes, observing the deformation of EVs adsorbed to a surface, and by uncovering distinct subpopulations in <100 nm-in-diameter EVs with fluorescently tagged membrane proteins.
Collapse
Affiliation(s)
- Andreas Wallucks
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCCanada
- Victor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQCCanada
| | - Philippe DeCorwin‐Martin
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCCanada
- Victor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQCCanada
| | - Molly L. Shen
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCCanada
- Victor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQCCanada
| | - Andy Ng
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCCanada
- Victor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQCCanada
| | - David Juncker
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCCanada
- Victor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQCCanada
| |
Collapse
|
4
|
Gentner C, Rogez B, Robert HML, Aggoun A, Tessier G, Bon P, Berto P. Enhanced Quantitative Wavefront Imaging for Nano-Object Characterization. ACS NANO 2024; 18:19247-19256. [PMID: 38981602 PMCID: PMC11271181 DOI: 10.1021/acsnano.4c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Quantitative phase imaging enables precise and label-free characterizations of individual nano-objects within a large volume, without a priori knowledge of the sample or imaging system. While emerging common path implementations are simple enough to promise a broad dissemination, their phase sensitivity still falls short of precisely estimating the mass or polarizability of vesicles, viruses, or nanoparticles in single-shot acquisitions. In this paper, we revisit the Zernike filtering concept, originally crafted for intensity-only detectors, with the aim of adapting it to wavefront imaging. We demonstrate, through numerical simulation and experiments based on high-resolution wavefront sensing, that a simple Fourier-plane add-on can significantly enhance phase sensitivity for subdiffraction objects─achieving over an order of magnitude increase (×12)─while allowing the quantitative retrieval of both intensity and phase. This advancement allows for more precise nano-object detection and metrology.
Collapse
Affiliation(s)
- Clémence Gentner
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Benoit Rogez
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
- L2n,
Université de technologie de Troyes, CNRS-UMR 7076, Troyes 10004, France
| | - Hadrien M. L. Robert
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Anis Aggoun
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Gilles Tessier
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Pierre Bon
- Université
de Limoges, CNRS, XLIM, UMR 7252, Limoges 87000, France
| | - Pascal Berto
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
- Université
Paris Cité, Paris 75006, France
- Institut
Universitaire de France (IUF), Paris 75231, France
| |
Collapse
|
5
|
Stollmann A, Garcia-Guirado J, Hong JS, Rüedi P, Im H, Lee H, Ortega Arroyo J, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. Nat Commun 2024; 15:4109. [PMID: 38750038 PMCID: PMC11096335 DOI: 10.1038/s41467-024-48132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pascal Rüedi
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
6
|
Stollmann A, Garcia-Guirado J, Hong JS, Im H, Lee H, Arroyo JO, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. RESEARCH SQUARE 2023:rs.3.rs-3309306. [PMID: 37886549 PMCID: PMC10602063 DOI: 10.21203/rs.3.rs-3309306/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. Herein, we first thoroughly characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles is required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Stollmann A, Garcia-Guirado J, Hong JS, Im H, Lee H, Arroyo JO, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. ARXIV 2023:arXiv:2308.06117v1. [PMID: 37608933 PMCID: PMC10441434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. Herein, we first thoroughly characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles is required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Ortiz-Orruño U, Quidant R, van Hulst NF, Liebel M, Ortega Arroyo J. Simultaneous Sizing and Refractive Index Analysis of Heterogeneous Nanoparticle Suspensions. ACS NANO 2023; 17:221-229. [PMID: 36525614 PMCID: PMC9835976 DOI: 10.1021/acsnano.2c06883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/13/2022] [Indexed: 05/25/2023]
Abstract
Rapid and reliable characterization of heterogeneous nanoparticle suspensions is a key technology across the nanosciences. Although approaches exist for homogeneous samples, they are often unsuitable for polydisperse suspensions, as particles of different sizes and compositions can lead to indistinguishable signals at the detector. Here, we introduce holographic nanoparticle tracking analysis, holoNTA, as a straightforward methodology that decouples size and material refractive index contributions. HoloNTA is applicable to any heterogeneous nanoparticle sample and has the sensitivity to measure the intrinsic heterogeneity of the sample. Specifically, we combined high dynamic range k-space imaging with holographic 3D single-particle tracking. This strategy enables long-term tracking by extending the imaging volume and delivers precise and accurate estimates of both scattering amplitude and diffusion coefficient of individual nanoparticles, from which particle refractive index and hydrodynamic size are determined. We specifically demonstrate, by simulations and experiments, that irrespective of localization uncertainty and size, the sizing sensitivity is improved as our extended detection volume yields considerably longer particle trajectories than previously reported by comparable technologies. As validation, we measured both homogeneous and heterogeneous suspensions of nanoparticles in the 40-250 nm size range and further monitored protein corona formation, where we identified subtle differences between the nanoparticle-protein complexes derived from avidin, bovine serum albumin, and streptavidin. We foresee that our approach will find many applications of both fundamental and applied nature where routine quantification and sizing of nanoparticles are required.
Collapse
Affiliation(s)
- Unai Ortiz-Orruño
- ICFO,
Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels08860, Spain
| | - Romain Quidant
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Niek F. van Hulst
- ICFO,
Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels08860, Spain
- ICREA,
Institució Catalana de Recerca i Estudis Avançats, Barcelona08010, Spain
| | - Matz Liebel
- ICFO,
Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels08860, Spain
| | - Jaime Ortega Arroyo
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich8092, Switzerland
| |
Collapse
|
9
|
Liebel M, Calderon I, Pazos-Perez N, van Hulst NF, Alvarez-Puebla RA. Widefield SERS for High-Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022; 61:e202200072. [PMID: 35107845 DOI: 10.1002/anie.202200072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Surface-enhanced Raman scattering (SERS) imaging is a powerful technology with unprecedent potential for ultrasensitive chemical analysis. Point-by-point scanning and often excessively long spectral acquisition-times hamper the broad exploitation of the full analytical potential of SERS. Here, we introduce large-scale SERS particle screening (LSSPS), a multiplexed widefield screening approach to particle characterization, which is 500-1000 times faster than typical confocal Raman implementations. Beyond its higher throughput, LSSPS simultaneously quantifies both the sample's Raman and Rayleigh scattering to directly quantify the fraction of SERS-active particles which allows for an unprecedented correlation of SERS activity with particle size. .
Collapse
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Irene Calderon
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
10
|
Liebel M, Calderon I, Pazos‐Perez N, Hulst NF, Alvarez‐Puebla RA. Widefield SERS for High‐Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels Barcelona Spain
| | - Irene Calderon
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
| | - Nicolas Pazos‐Perez
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
| | - Niek F. Hulst
- ICFO - Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels Barcelona Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Ramon A. Alvarez‐Puebla
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| |
Collapse
|
11
|
Liebel M, Camargo FVA, Cerullo G, van Hulst NF. Widefield phototransient imaging for visualizing 3D motion of resonant particles in scattering environments. NANOSCALE 2022; 14:3062-3068. [PMID: 34993531 DOI: 10.1039/d1nr06837g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Identifying, visualising and ultimately tracking dynamically moving non-fluorescent nanoparticles in the presence of non-specific scattering is a long-standing challenge across the nano- and life-sciences. In this work we demonstrate that our recently developed ultrafast holographic transient (UHT) microscope is ideally suited for meeting this challenge. We show that UHT microscopy allows reliably distinguishing off-resonant, dielectric, from resonant, metallic, nanoparticles, based on the phototransient signal: a pre-requisite for single-particle tracking in scattering environments. We then demonstrate the capability of UHT microscopy to holographically localize in 3D single particles over large volumes of view. Ultimately, we combine the two concepts to simultaneously track several tens of freely diffusing gold nanoparticles, within a 110 × 110 × 110 μm volume of view at an integration time of 10 ms per frame, while simultaneously recording their phototransient signals. The combined experimental concepts outlined and validated in this work lay the foundation for background-free 3D single-particle tracking applications or spectroscopy in scattering environments and are immediately applicable to systems as diverse as live cells and tissues or supported heterogeneous catalysts.
Collapse
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | - Franco V A Camargo
- Istituto di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
12
|
Saemisch L, van Hulst NF, Liebel M. One-Shot Phase Image Distinction of Plasmonic and Dielectric Nanoparticles. NANO LETTERS 2021; 21:4021-4028. [PMID: 33899486 DOI: 10.1021/acs.nanolett.1c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale phase control is one of the most powerful approaches to specifically tailor electrical fields in modern nanophotonics. Especially the precise subwavelength assembly of many individual nanobuilding blocks has given rise to exciting new materials as diverse as metamaterials, for miniaturizing optics, or 3D assembled plasmonic structures for biosensing applications. Despite its fundamental importance, the phase response of individual nanostructures is experimentally extremely challenging to visualize. Here, we address this shortcoming and measure the quantitative scattering phase of different nanomaterials such as gold nanorods and spheres as well as dielectric nanoparticles. Beyond reporting spectrally resolved responses, with phase changes close to π when passing the particles' plasmon resonance, we devise a simple method for distinguishing different plasmonic and dielectric particles purely based on their phase behavior. Finally, we integrate this novel approach in a single-shot two-color scheme, capable of directly identifying different types of nanoparticles on one sample, from a single widefield image.
Collapse
Affiliation(s)
- Lisa Saemisch
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Niek F van Hulst
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Matz Liebel
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
13
|
Liebel M, Camargo FVA, Cerullo G, van Hulst NF. Ultrafast Transient Holographic Microscopy. NANO LETTERS 2021; 21:1666-1671. [PMID: 33539103 PMCID: PMC7909069 DOI: 10.1021/acs.nanolett.0c04416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology is increasingly being applied in many emerging technologies, ranging from metamaterials to next-generation nanodrugs. A key ingredient for its success is the ability to specifically tailor ultrafast nanoscale light-matter interactions over very large areas. Unfortunately, dynamic imaging by ultrafast nanoscopy so far remains limited to very small 2D areas. This shortcoming prevents connecting single-particle observations with large-scale functionality. Here, we address this experimental challenge by combining concepts of ultrafast spectroscopy, wide-field nanoscopy, and digital holography. We introduce an ultrafast holographic transient microscope for wide-field transient nanoscale imaging with high frequency all-optical signal demodulation. We simultaneously record ultrafast transient dynamics of many individual nano-objects and demonstrate time-resolved spectroscopy of gold nanoparticles over a large volume irrespective of their x-y-z position. Our results pave the way to single-shot 3D microscopy of 2D and 3D materials on arbitrary time scales from femtosecond carrier dynamics in optoelectronic materials to millisecond dynamics in complex tissues.
Collapse
Affiliation(s)
- Matz Liebel
- ICFO -Institut de Ciencies Fotoniques,
The Barcelona Institute of Science and Technology,08860
Castelldefels, Barcelona, Spain
| | - Franco V. A. Camargo
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano,
Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano,
Italy
| | - Niek F. van Hulst
- ICFO -Institut de Ciencies Fotoniques,
The Barcelona Institute of Science and Technology,08860
Castelldefels, Barcelona, Spain
- ICREA - Institució Catalana de
Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010
Barcelona, Spain
| |
Collapse
|