1
|
Hörmann M, Camargo FVA, van Hulst NF, Cerullo G, Liebel M. Ultrabroadband Optical Diffraction Tomography. ACS PHOTONICS 2024; 11:3680-3687. [PMID: 39310293 PMCID: PMC11413850 DOI: 10.1021/acsphotonics.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Optical diffraction tomography (ODT) is a powerful noninvasive 3D imaging technique, but its combination with broadband light sources is difficult. In this study, we introduce ultrabroadband ODT, covering over 150 nm of visible spectral bandwidth with a lateral spatial resolution of 150 nm. Our work addresses a critical experimental gap by enabling the measurement of broadband refractive index changes in 3D samples, crucial information that is difficult to assess with existing methodologies. We present broadband, spectrally resolved ODT images of HeLa cells, obtained via pulse-shaping-based Fourier transform spectroscopy. The spectral observations enabled by ultrabroadband ODT, combined with material-dependent refractive index responses, allow for precise three-dimensional identification of nanoparticles within cellular structures. Our work represents a crucial step toward time and spectrally resolved tomography of complex 3D structures with implications for life and materials science applications.
Collapse
Affiliation(s)
- Martin Hörmann
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano 20133, Italy
| | - Franco V. A. Camargo
- Istituto
di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, Milano 20133, Italy
| | - Niek F. van Hulst
- ICFO
− Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, Castelldefels - Barcelona 08860, Spain
- ICREA
− Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, Milano 20133, Italy
| | - Matz Liebel
- ICFO
− Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, Castelldefels - Barcelona 08860, Spain
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, Amsterdam, HV 1081, The Netherlands
| |
Collapse
|
2
|
Hörmann M, Visentin F, Chakraborty SK, Nayak B, Sahoo PK, Cerullo G, Camargo FVA. Self-referencing for quasi shot-noise-limited widefield transient microscopy. OPTICS EXPRESS 2024; 32:21230-21242. [PMID: 38859482 DOI: 10.1364/oe.525581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Many applications of ultrafast and nonlinear optical microscopy require the measurement of small differential signals over large fields-of-view. Widefield configurations drastically reduce the acquisition time; however, they suffer from the low frame rates of two-dimensional detectors, which limit the modulation frequency, making the measurement sensitive to excess laser noise. Here we introduce a self-referenced detection configuration for widefield differential imaging. Employing regions of the field of view with no differential signal as references, we cancel probe fluctuations and increase the signal-to-noise ratio by an order of magnitude reaching noise levels only a few percent above the shot noise limit. We anticipate broad applicability of our method to transient absorption, stimulated Raman scattering and photothermal-infrared microscopies.
Collapse
|
3
|
Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, Volek TS, Faitz ZM, Carlin CC, Dionne JA, Zanni MT, Gruebele M, Roberts ST, Link S, Landes CF. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14557-14586. [PMID: 37554548 PMCID: PMC10406104 DOI: 10.1021/acs.jpcc.3c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Indexed: 08/10/2023]
Abstract
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.
Collapse
Affiliation(s)
- Niklas Gross
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T. Kuhs
- Army
Research Laboratory-South, U.S. Army DEVCOM, Houston, Texas 77005, United States
| | - Behnaz Ostovar
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei-Yi Chiang
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kelly S. Wilson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanner S. Volek
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary M. Faitz
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Claire C. Carlin
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sean T. Roberts
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
5
|
Liebel M, Camargo FVA, Cerullo G, van Hulst NF. Widefield phototransient imaging for visualizing 3D motion of resonant particles in scattering environments. NANOSCALE 2022; 14:3062-3068. [PMID: 34993531 DOI: 10.1039/d1nr06837g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Identifying, visualising and ultimately tracking dynamically moving non-fluorescent nanoparticles in the presence of non-specific scattering is a long-standing challenge across the nano- and life-sciences. In this work we demonstrate that our recently developed ultrafast holographic transient (UHT) microscope is ideally suited for meeting this challenge. We show that UHT microscopy allows reliably distinguishing off-resonant, dielectric, from resonant, metallic, nanoparticles, based on the phototransient signal: a pre-requisite for single-particle tracking in scattering environments. We then demonstrate the capability of UHT microscopy to holographically localize in 3D single particles over large volumes of view. Ultimately, we combine the two concepts to simultaneously track several tens of freely diffusing gold nanoparticles, within a 110 × 110 × 110 μm volume of view at an integration time of 10 ms per frame, while simultaneously recording their phototransient signals. The combined experimental concepts outlined and validated in this work lay the foundation for background-free 3D single-particle tracking applications or spectroscopy in scattering environments and are immediately applicable to systems as diverse as live cells and tissues or supported heterogeneous catalysts.
Collapse
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | - Franco V A Camargo
- Istituto di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|