1
|
Bjurström A, Edin H, Hillborg H, Nilsson F, Olsson RT, Pierre M, Unge M, Hedenqvist MS. A Review of Polyolefin-Insulation Materials in High Voltage Transmission; From Electronic Structures to Final Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401464. [PMID: 38870339 DOI: 10.1002/adma.202401464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/30/2024] [Indexed: 06/15/2024]
Abstract
This review focuses on the use of polyolefins in high-voltage direct-current (HVDC) cables and capacitors. A short description of the latest evolution and current use of HVDC cables and capacitors is first provided, followed by the basics of electric insulation and capacitor functions. Methods to determine dielectric properties are described, including charge transport, space charges, resistivity, dielectric loss, and breakdown strength. The semicrystalline structure of polyethylene and isotactic polypropylene is described, and the way it relates to the dielectric properties is discussed. A significant part of the review is devoted to describing the state of art of the modeling and prediction of electric or dielectric properties of polyolefins with consideration of both atomistic and continuum approaches. Furthermore, the effects of the purity of the materials and the presence of nanoparticles are presented, and the review ends with the sustainability aspects of these materials. In summary, the effective use of modeling in combination with experimental work is described as an important route toward understanding and designing the next generations of materials for electrical insulation in high-voltage transmission.
Collapse
Affiliation(s)
- Anton Bjurström
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- NKT HV Cables, Technology Consulting, Västerås, SE-721 78, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Hans Edin
- Department of Electrical Engineering, Division of Electromagnetic Engineering and Fusion Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Henrik Hillborg
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- Hitachi Energy Research, Västerås, SE-721 78, Sweden
| | - Fritjof Nilsson
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- FSCN Research Centre, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Max Pierre
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mikael Unge
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- NKT HV Cables, Technology Consulting, Västerås, SE-721 78, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
2
|
Li H, Vargo E, Xie Z, Ma L, Pieters PF, Shelton SW, Alivisatos AP, Xu T, Liu Y. Multilaminate Energy Storage Films from Entropy-Driven Self-Assembled Supramolecular Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401954. [PMID: 38669470 DOI: 10.1002/adma.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Composite materials comprising polymers and inorganic nanoparticles (NPs) are promising for energy storage applications, though challenges in controlling NP dispersion often result in performance bottlenecks. Realizing nanocomposites with controlled NP locations and distributions within polymer microdomains is highly desirable for improving energy storage capabilities but is a persistent challenge, impeding the in-depth understanding of the structure-performance relationship. In this study, a facile entropy-driven self-assembly approach is employed to fabricate block copolymer-based supramolecular nanocomposite films with highly ordered lamellar structures, which are then used in electrostatic film capacitors. The oriented interfacial barriers and well-distributed inorganic NPs within the self-assembled multilaminate nanocomposites effectively suppress leakage current and mitigate the risk of breakdown, showing superior dielectric strength compared to their disordered counterparts. Consequently, the lamellar nanocomposite films with optimized composition exhibit high energy efficiency (>90% at 650 MV m-1), along with remarkable energy density and power density. Moreover, finite element simulations and statistical modeling have provided theoretical insights into the impact of the lamellar structure on electrical conduction, electric field distribution, and electrical tree propagation. This work marks a significant advancement in the design of organic-inorganic hybrids for energy storage, establishing a well-defined correlation between microstructure and performance.
Collapse
Affiliation(s)
- He Li
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Vargo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Zongliang Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Le Ma
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | | | - Steve W Shelton
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Armand Paul Alivisatos
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, 94720, USA
| | - Ting Xu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, 94720, USA
| | - Yi Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Xu Z, Chu X, Li W. Microscopic Origins of the Distinct Mechanical Response of ABA and ABC Block Copolymer Nanostructures. ACS Macro Lett 2024:240-246. [PMID: 38315127 DOI: 10.1021/acsmacrolett.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
It has been commonly believed that the ordered thermoplastic elastomers formed by the ABC triblock copolymer should have better mechanical performance than that by the ABA counterpart due to the higher bridging fraction. However, the thermoplastic elastomer of ABA was often observed to perform better than that of ABC. To compare the performance of two kinds of thermoplastic elastomers and unveil the underlying microscopic mechanism, we have calculated their stress-strain curves using coarse-grained molecular dynamics simulations in conjunction with self-consistent field theory. It is revealed that the stretching degree of the bridging blocks and the network connectivity play important roles in determining the mechanical properties in addition to the bridging fraction. The higher degree in the stretching of bridging blocks and network connectivity of the structure formed by the ABA triblock copolymer enables its superior mechanical performance over the ABC block copolymer.
Collapse
Affiliation(s)
- Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xing Chu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Xu Z, Dong Q, Zhang L, Li W. Enhanced dielectric permittivity of hierarchically double-gyroid nanocomposites via macromolecular engineering of block copolymers. NANOSCALE 2022; 14:15275-15280. [PMID: 36222383 DOI: 10.1039/d2nr04516h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is a challenging task to realize the periodically bicontinuous gyroid nanostructures of flexible nanocomposites with high loading of functionalized nanoparticles, which could exhibit high dielectric permittivity for energy storage and electronic devices. Herein, with the aid of the concept of macromolecular engineering, we propose novel nanocomposites, composed of A'(A''B)n miktoarm star copolymers and nanoparticles, to obtain a double-gyroid structure through self-consistent field theory coupled with density functional theory. By tailoring the architecture of this copolymer, a large window of the double-gyroid phase extending to a high loading concentration of nanoparticles is achieved, leading to a hierarchical structure of a percolation network of nanoparticles within the gyroid channels. Furthermore, the finite difference quasielectrostatic method is integrated to reveal an enhanced dielectric permittivity of the structured nanocomposites by increasing the loading concentration of nanoparticles. The simultaneous achievement of an ordered double-gyroid phase and high loading nanoparticles represents a crucial step toward the realization of fully three-dimensional network-like metamaterials via a rational molecular design of nanocomposites.
Collapse
Affiliation(s)
- Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Zhao H, Xu Z, Lin J. Hierarchically Chiral Nanostructures Self-Assembled from Nanoparticle Tethered Block Copolymers. Macromol Rapid Commun 2022; 43:e2100855. [PMID: 35247288 DOI: 10.1002/marc.202100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Indexed: 11/07/2022]
Abstract
Chiral nanostructures of nanoparticle assemblies have attracted tremendous interest for their fascinating functional properties. Herein, through theoretical simulations, we show that nanoparticle tethered block copolymers can self-assemble into hierarchically chiral nanostructures. Two-fold helices are formed in the hierarchically chiral nanostructures: the diblock copolymers form helical supercylinders while the nanoparticles arrange into chiral assemblies wrapped around the helical supercylinders. The hierarchically chiral nanostructures can be formed in a large parameter window. Circular dichroism calculations demonstrate that the coexistence of polymeric helices and chiral nanoparticle assemblies improves the chiroptical activity. These findings can provide guidelines for designing hierarchically ordered chiral nanostructures with advanced functional properties. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongmeng Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|