1
|
Zhou Y, Li M, Wan Y, Tan W, Li Z, Tian L. Pd-based chalcogenides for energy conversion electrocatalysis. NANOSCALE 2025; 17:7639-7650. [PMID: 40026106 DOI: 10.1039/d4nr05230g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The research and development of high-performance electrocatalysts are crucial for advancing highly efficient energy conversion technologies. Pd-based chalcogenides, an innovative class of materials, have been extensively studied as electrocatalysts due to their diverse advantages for energy conversion reactions. This review summarizes recent progress in the synthesis, modification, and application of various Pd-based chalcogenides. It begins by presenting four effective synthesis methods with typical examples, followed by strategies for increasing the active sites, adjusting the electronic structure, and optimizing the binding energy with intermediates. The review also explores the applications of representative Pd-S, Pd-Se, and Pd-Te catalysts for electrocatalytic reactions. It is anticipated that this review will inspire further research into the development of advanced Pd-based chalcogenide electrocatalysts.
Collapse
Affiliation(s)
- Yingmei Zhou
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Mi Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Yigui Wan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenyi Tan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
2
|
Lu M, Hu Y, Zhang G, Zhao X, Yang X, Yu X, Zhang X, Lu Z, Liu Y, Li L. L1 0-PtCo and L1 2-Pt 3Co Intermetallics for Oxygen Reduction Reaction: The Influence of Composition and Structure on Properties. Chempluschem 2025; 90:e202400322. [PMID: 39367618 DOI: 10.1002/cplu.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Pt-based intermetallics are regarded as highly efficient electrocatalysts for oxygen reduction reaction (ORR). However, Pt-based intermetallics with different Pt: M atomic ratios have different atomic arrangements and crystal structures, which will change the electronic structure and coordination environment of Pt, thus affecting the electrocatalytic activity. In this work, we prepared L12-Pt3Co and L10-PtCo intermetallic catalysts by modulating the molar ratio of Pt and Co precursors using a thermal annealing method. The mass activity (MA) of L10-PtCo is 0.52 A mg-1 Pt at 0.9 V, which is 1.44 times larger than that of L12-Pt3Co (0.36 A mg-1 Pt). In addition, the MA of L10-PtCo decreases by 17.31 % after 10,000 CV cycles, which is smaller than that of L12-Pt3Co (25.00 % loss in MA), showing excellent structural stability. Theoretical calculations reveal that compared to L12-Pt3Co, L10-PtCo has more electrons transferred to the Pt sites, which further optimizes the electronic structure of Pt and reduces the d-band center, leading to the increase of the electrocatalytic performance. This work provides new insights into the study of Pt-based intermetallics with different Pt: M ratios, which is helpful for the screening and preparation of high-performance Pt-based intermetallics.
Collapse
Affiliation(s)
- Mingwang Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Yuekun Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Guanhua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xiaowei Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Yan Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| |
Collapse
|
3
|
Tian J, Song Y, Hao X, Wang X, Shen Y, Liu P, Wei Z, Liao T, Jiang L, Guo J, Xu B, Sun Z. Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412051. [PMID: 39529551 DOI: 10.1002/adma.202412051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mgPd -1, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mgPt -1) and Pd/C (0.113 A mgPd -1) at 0.9 VRHE. Most significantly, in H2-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm-2, respectively, compared with 0.54 and 0.13 W cm-2 of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.
Collapse
Affiliation(s)
- Jiakang Tian
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Instrumental Analysis Center Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Xudong Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Yongqing Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Zebin Wei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Lei Jiang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- Instrumental Analysis Center Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| |
Collapse
|
4
|
Yu Z, Deng H, Yao Q, Zhao L, Xue F, He T, Hu Z, Huang WH, Pao CW, Yang LM, Huang X. Selective and durable H 2O 2 electrosynthesis catalyst in acid by selenization induced straining and phasing. Nat Commun 2024; 15:9346. [PMID: 39472430 PMCID: PMC11522696 DOI: 10.1038/s41467-024-53607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Developing efficient electrocatalysts for acidic electrosynthesis of hydrogen peroxide (H2O2) holds considerable significance, while the selectivity and stability of most materials are compromised under acidic conditions. Herein, we demonstrate that constructing amorphous platinum-selenium (Pt-Se) shells on crystalline Pt cores can manipulate the oxygen reduction reaction (ORR) pathway to efficiently catalyze the electrosynthesis of H2O2 in acids. The Se2‒Pt nanoparticles, with optimized shell thickness, exhibit over 95% selectivity for H2O2 production, while suppressing its decomposition. In flow cell reactor, Se2‒Pt nanoparticles maintain current density of 250 mA cm-2 for 400 h, yielding a H2O2 concentration of 113.2 g L-1 with productivity of 4160.3 mmol gcat-1 h-1 for effective organic dye degradation. The constructed amorphous Pt-Se shell leads to desirable O2 adsorption mode for increased selectivity and induces strain for optimized OOH* binding, accelerating the reaction kinetics. This selenization approach is generalizable to other noble metals for tuning 2e‒ ORR pathway.
Collapse
Affiliation(s)
- Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Wuhan, 430074, China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liangqun Zhao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianou He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Wuhan, 430074, China.
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
5
|
Liu Q, Du H, Li Z, Wang C, Zeng X, Wang R, Liu Q, Jiang X, Fu G, Tang Y. Cyanogel-Induced Facile Synthesis of Palladium Hydride for Electrocatalytic Oxygen Reduction. CHEMSUSCHEM 2024; 17:e202400680. [PMID: 38747882 DOI: 10.1002/cssc.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Indexed: 06/06/2024]
Abstract
Palladium hydride (PdHx) is one of the well-known electrocatalytic materials, yet its synthesis is still a challenge through an energy-efficient and straightforward method. Herein, we propose a new and facile cyanogel-assisted synthesis strategy for the preparation of PdH0.649 at a mild environment with NaBH4 as the hydrogen source. Unlike traditional inorganic Pd precursors, the unique Pd-CN-Pd bridge in Pdx[Pd(CN)4]y ⋅ aH2O cyanogel offers more favourable spatial sites for insertion of H atoms. The characteristic three-dimensional backbone of cyanogel also acts as a support scaffold resulting in the interconnected network structure of PdH0.649. Due to the incorporation of H atoms and interconnected network structure, the PdH0.649 achieves a high half-wave potential of 0.932 V, a high onset potential of 1.062 V, and a low activation energy, as well as a long-term lifetime for oxygen reduction reaction. Theoretical calculation demonstrates a downshift of the d-band centre of Pd in PdH0.649 owing to the dominant Pd-H incorporation that weakens the binding energies of the *OH intermediate species. Zn-air batteries (ZAB) based on PdH0.649 exhibits high power density, competitive open circuit voltage, and good stability, exceeding that of commercial Pt black. This work not only opens up a new avenue for the development of high-efficiency Pt-free catalysts but also provides an original approach and insight into the synthesis of PdHx.
Collapse
Affiliation(s)
- Qicheng Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Han Du
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Caikang Wang
- School of New Energy, Nanjing University of Science and Technology, Wu Xi, Jiangyin, 214400, China
| | - Xin Zeng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruotong Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyi Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xian Jiang
- School of New Energy, Nanjing University of Science and Technology, Wu Xi, Jiangyin, 214400, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
6
|
Wang L, Yan W, Yu Q, Liu L, Kao CW, Huang YC, Chan TS, Hu Z, Lin H, Shen D, Huang X, Li Y. Tuning Crystal Phase of Palladium-Selenium Nanowires for Enhanced Ethylene Glycol Electrocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403448. [PMID: 38881353 DOI: 10.1002/smll.202403448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Alcohol electrooxidation is pivotal for a sustainable energy economy. However, designing efficient electrocatalysts for this process is still a formidable challenge. Herein, palladium-selenium nanowires featuring distinct crystal phases: monoclinic Pd7Se2 and tetragonal Pd4.5Se for ethylene glycol electrooxidation reaction (EGOR) are synthesized. Notably, the supported monoclinic Pd7Se2 nanowires (m-Pd7Se2 NWs/C) exhibit superior EGOR activity, achieving a mass activity (MA) and specific activity (SA) of 10.4 A mgPd -1 (18.7 mA cm-2), which are 8.0 (6.7) and 10.4 (8.2) times versus the tetragonal Pd4.5Se and commercial Pd/C and surpass those reported in the literature. Furthermore, m-Pd7Se2 NWs/C displays robust catalytic activity for other alcohol electrooxidation. Comprehensive characterization and density functional theory (DFT) calculations reveal that the enhanced electrocatalytic performance is attributed to the increased formation of Pd0 on the high-index facets of the m-Pd7Se2 NWs, which lowers the energy barriers for the C─C bond dissociation in CHOHCHOH* and the CO* oxidation to CO2*. This study provides palladium-based alloy electrocatalysts exhibiting the highest mass activity reported to date for the electrooxidation of ethylene glycol, achieved through the crystalline phase engineering strategy.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qingping Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Liangbin Liu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yu-Cheng Huang
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| | - Dazhi Shen
- College of Chemistry and Environmental Science, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 36300, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| | - Yunhua Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
7
|
Xue F, Li Q, Ji W, Lv M, Xu H, Zeng J, Li T, Ren Y, Zhou L, Chen X, Deng J, Lin K, Xing X. Highly efficient semi-hydrogenation in strained ultrathin PdCu shell and the atomic deciphering for the unlocking of activity-selectivity. Chem Sci 2024; 15:11837-11846. [PMID: 39092101 PMCID: PMC11290329 DOI: 10.1039/d4sc03291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Excellent ethylene selectivity in acetylene semi-hydrogenation is often obtained at the expense of activity. To break the activity-selectivity trade-off, precise control and in-depth understanding of the three-dimensional atomic structure of surfacial active sites are crucial. Here, we designed a novel Au@PdCu core-shell nanocatalyst featuring diluted and stretched Pd sites on the ultrathin shell (1.6 nm), which showed excellent reactivity and selectivity, with 100% acetylene conversion and 92.4% ethylene selectivity at 122 °C, and the corresponding activity was 3.3 times higher than that of the PdCu alloy. The atomic three-dimensional decoding for the activity-selectivity balance was revealed by combining pair distribution function (PDF) and reverse Monte Carlo simulation (RMC). The results demonstrate that a large number of active sites with a low coordination number of Pd-Pd pairs and an average 3.25% tensile strain are distributed on the surface of the nanocatalyst, which perform a pivotal function in the simultaneous improvement of hydrogenation activity and ethylene selectivity. Our work not only develops a novel strategy for unlocking the linear scaling relation in heterogeneous catalysis but also provides a paradigm for atomic 3D understanding of lattice strain in core-shell nanocatalysts.
Collapse
Affiliation(s)
- Fan Xue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Weihua Ji
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Hankun Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences 201204 Shanghai P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences 201800 Shanghai P. R. China
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Yang Ren
- Department of Physics, City University of Hong Kong Kowloon Hong Kong 999077 China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
8
|
Guo Y, Zheng F, Wang T, Liu X, Tian X, Qu K, Wang L, Li R, Kang W, Li Z, Li H. Construction of Pd-Te Intermetallic Compounds to Achieve Ultrastable Oxygen Reduction Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36363-36372. [PMID: 38954684 DOI: 10.1021/acsami.4c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Palladium (Pd)-transition metal alloys have the potential to regulate the intermediate surface adsorption strength in oxygen reduction reactions (ORR), making them a promising substitute for platinum-based catalysts. Nonetheless, prolonged electrochemical cycling can lead to the depletion of transition metals, resulting in structural degradation and poor durability. Herein, the synthesis of alloy catalysts (Pd25%Te75%) containing Pd and the metalloid tellurium (Te) through a one-step reduction method is reported. Characterizations of powder X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy demonstrated both uniform dispersion and strong binding force of elements within the PdTe alloy, along with providing crystallographic details of associated compounds. Based on density functional theory calculations, PdTe had a more negative d-band center than that of pure Pd, which reduces the adsorption capacity between active sites and intermediates in the ORR, and therefore enhances reaction kinetics. The Pd25%Te75% exhibited excellent ORR activity, and its onset and half-wave potentials were ∼0.98 and ∼0.90 V, respectively, at 1600 rpm within the O2-saturated 1.0 M KOH. Significantly, accelerated durability tests achieved exceptional stability, and half-wave potential just decayed by 4 mV after 30000 consecutive cycles. Moreover, this study aims to promote the preparation of Pd and metalloid alloys for other energy conversion applications.
Collapse
Affiliation(s)
- Yajie Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Fuxian Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaotan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Konggang Qu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Rui Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zongge Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
9
|
Zhao WY, Chen MY, Wu HR, Li WD, Lu BA. Phosphorus-Doping Enables the Superior Durability of a Palladium Electrocatalyst towards Alkaline Oxygen Reduction Reactions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2879. [PMID: 38930248 PMCID: PMC11204636 DOI: 10.3390/ma17122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction's catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition metal alloys in fuel cells is significantly constrained by their inadequate long-term durability due to the propensity of transition metals to leach. In this study, a nonmetallic doping strategy was devised and implemented to produce a Pd catalyst doped with P that exhibited exceptional durability towards ORRs. Pd3P0.95 with an average size of 6.41 nm was synthesized by the heat-treatment phosphorization of Pd nanoparticles followed by acid etching. After P-doping, the size of the Pd nanoparticles increased from 5.37 nm to 6.41 nm, and the initial mass activity (MA) of Pd3P0.95/NC reached 0.175 A mgPd-1 at 0.9 V, slightly lower than that of Pd/C. However, after 40,000 cycles of accelerated durability testing, instead of decreasing, the MA of Pd3P0.95/NC increased by 6.3% while the MA loss of Pd/C was 38.3%. The durability was primarily ascribed to the electronic structure effect and the aggregation resistance of the Pd nanoparticles. This research also establishes a foundation for the development of Pd-based ORR catalysts and offers a direction for the future advancement of catalysts designed for practical applications in AFCs.
Collapse
Affiliation(s)
- Wen-Yuan Zhao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
- International College, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| | - Hao-Ran Wu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| | - Wei-Dong Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| | - Bang-An Lu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| |
Collapse
|
10
|
Ross RD, Lee K, Quintana Cintrón GJ, Xu K, Sheng H, Schmidt JR, Jin S. Stable Pentagonal Layered Palladium Diselenide Enables Rapid Electrosynthesis of Hydrogen Peroxide. J Am Chem Soc 2024; 146:15718-15729. [PMID: 38818811 DOI: 10.1021/jacs.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e- ORR) is promising for various practical applications, such as wastewater treatment. However, few electrocatalysts are active and selective for 2e- ORR yet are also resistant to catalyst leaching under realistic operating conditions. Here, a joint experimental and computational study reveals active and stable 2e- ORR catalysis in neutral media over layered PdSe2 with a unique pentagonal puckered ring structure type. Computations predict active and selective 2e- ORR on the basal plane and edge of PdSe2, but with distinct kinetic behaviors. Electrochemical measurements of hydrothermally synthesized PdSe2 nanoplates show a higher 2e- ORR activity than other Pd-Se compounds (Pd4Se and Pd17Se15). PdSe2 on a gas diffusion electrode can rapidly accumulate H2O2 in buffered neutral solution under a high current density. The electrochemical stability of PdSe2 is further confirmed by long device operational stability, elemental analysis of the catalyst and electrolyte, and synchrotron X-ray absorption spectroscopy. This work establishes a new efficient and stable 2e- ORR catalyst at practical current densities and opens catalyst designs utilizing the unique layered pentagonal structure motif.
Collapse
Affiliation(s)
- R Dominic Ross
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kwanpyung Lee
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gerardo J Quintana Cintrón
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kaylin Xu
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Lyu Z, Cai J, Zhang XG, Li H, Huang H, Wang S, Li T, Wang Q, Xie Z, Xie S. Biphase Pd Nanosheets with Atomic-Hybrid RhO x/Pd Amorphous Skins Disentangle the Activity-Stability Trade-Off in Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314252. [PMID: 38551140 DOI: 10.1002/adma.202314252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Indexed: 04/05/2024]
Abstract
The activity-stability trade-off relationship of oxygen reduction reaction (ORR) is a tricky issue that strikes the electrocatalyst population and hinders the widespread application of fuel cells. Here neoteric biphase Pd nanosheets that are structured with ultrathin two-dimensional crystalline Pd inner cores and ≈1 nm thin atomic-hybrid RhOx/Pd amorphous skins, named c/a-Pd@PdRh NSs, for disentangling this trade-off dilemma for alkaline ORR are developed. The superthin amorphous skins significantly amplify the quantity of flexibly low-coordinated atoms for electrocatalysis. An in situ selected oxidation of the top-surface Rh dopants creates atomically hybrid RhOx/Pd disorder surfaces. Detailed energy spectra and theoretical simulation confirm that these RhOx/Pd interfaces can arouse a surface charge redistribution, causing significant electron deficiency and lowered d-band center for surface Pd. Meanwhile, anticorrosive Rh/RhOx species can thermodynamically passivate the neighboring Pd atoms from oxidative dissolution. Thanks to these amplified interfacial effects, the biphase c/a-Pd@PdRh NSs simultaneously exhibit a superhigh ORR activity (5.92 A mg-1, 22.8 times that of Pt/C) and an outstanding long-lasting stability after 100k cycles of accelerated durability test, showcasing unprecedented electrocatalysts for breaking the activity-stability trade-off relationship of ORR. This work paves a bran-new strategy for designing high-performance electrocatalysts through creating modulated amorphous skins on low-dimensional nanomaterials.
Collapse
Affiliation(s)
- Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huiqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongpu Huang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Tianyu Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
12
|
Yu Z, Chen Y, Xia J, Yao Q, Hu Z, Huang WH, Pao CW, Hu W, Meng XM, Yang LM, Huang X. Amorphization Activated Multimetallic Pd Alloys for Boosting Oxygen Reduction Catalysis. NANO LETTERS 2024; 24:1205-1213. [PMID: 38214250 DOI: 10.1021/acs.nanolett.3c04045] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.
Collapse
Affiliation(s)
- Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuwen Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Wenfeng Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang-Min Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
13
|
Wang H, Zhou T, Xu S, Deng K, Yu H, Xu Y, Li X, Wang Z, Wang L. Boron-intercalation-triggered crystalline transition of Pd nanosheet assemblies for an enhanced oxygen reduction reaction. NANOTECHNOLOGY 2024; 35:155401. [PMID: 38150731 DOI: 10.1088/1361-6528/ad18ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
The development of effective and stable cathode electrocatalysts is highly desired for fuel cells. Controlling the composition and morphology of Pd-based materials can provide a great opportunity to improve their oxygen reduction reaction (ORR) performance. Here, we report the synthesis of hexagonal close-packed (hcp) Pd2B nanosheet assemblies (Pd2B NAs) via the boronation reaction between as-synthesized Pd NAs and N,N-dimethylformamide. The hcp Pd2B NAs with uniform pore distribution can provide sufficient active sites for ORRs. The insertion of B atoms can induce the phase transition from face-centered cubic structure to hcp structure, as the most thermodynamically stable phase in the Pd-B alloy, which is beneficial for enhancing the ORR stability and toxicity resistance. Therefore, the hcp Pd2B NAs exhibit superior mass activity, specific activity and excellent stability for ORR. The present strategy of boron-intercalation-triggered crystalline transition of Pd-based nanomaterials is valuable for the design of metal-nonmetal catalysts with enhanced performance.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shan Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
14
|
Guo W, Yang R, Fan J, Xiang X, Du X, Shi N, Bao J, Han M. Component-controlled synthesis of Pd xSn y nanocrystals on carbon nanotubes as advanced electrocatalysts for oxygen reduction reaction. RSC Adv 2024; 14:771-778. [PMID: 38174283 PMCID: PMC10759278 DOI: 10.1039/d3ra07657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Pd-based bimetallic or multimetallic nanocrystals are considered to be potential electrocatalysts for cathodic oxygen reduction reaction (ORR) in fuel cells. Although much advance has been made, the synthesis of component-controlled Pd-Sn alloy nanocrystals or corresponding nanohybrids is still challenging, and the electrocatalytic ORR properties are not fully explored. Herein, component-controlled synthesis of PdxSny nanocrystals (including Pd3Sn, Pd2Sn, Pd3Sn2, and PdSn) has been realized, which are in situ grown or deposited on pre-treated multi-walled carbon nanotubes (CNTs) to form well-coupled nanohybrids (NHs) by a facile one-pot non-hydrolytic system thermolysis method. In alkaline media, all the resultant PdxSny/CNTs NHs are effective at catalyzing ORR. Among them, the Pd3Sn/CNTs NHs exhibit the best catalytic activity with the half-wave potential of 0.85 V (vs. RHE), good cyclic stability, and excellent methanol-tolerant capability due to the suited Pd-Sn alloy component and its strong interaction or efficient electronic coupling with CNTs. This work is conducive to the advancement of Pd-based nanoalloy catalysts by combining component engineering and a hybridization strategy and promoting their application in clean energy devices.
Collapse
Affiliation(s)
- Weibin Guo
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Rui Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China
| | - Jiayao Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Xing Xiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Xuehui Du
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Naien Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
15
|
Ning S, Li M, Wang X, Zhang D, Zhang B, Wang C, Sun D, Tang Y, Li H, Sun K, Fu G. Importing Antibonding-Orbital Occupancy through Pd-O-Gd Bridge Promotes Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202314565. [PMID: 37943183 DOI: 10.1002/anie.202314565] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The active-site density, intrinsic activity, and durability of Pd-based materials for oxygen reduction reaction (ORR) are critical to their application in industrial energy devices. This work constructs a series of carbon-based rare-earth (RE) oxides (Gd2 O3 , Sm2 O3 , Eu2 O3 , and CeO2 ) by using RE metal-organic frameworks to tune the ORR performance of the Pd sites through the Pd-REx Oy interface interaction. Taking Pd-Gd2 O3 /C as a representative, it is identified that the strong coupling between Pd and Gd2 O3 induces the formation of the Pd-O-Gd bridge, which triggers charge redistribution of Pd and Gd2 O3 . The screened Pd-Gd2 O3 /C exhibits impressive ORR performance with high onset potential (0.986 VRHE ), half-wave potential (0.877 VRHE ), and excellent stability. Similar ORR results are also found for Pd-Sm2 O3 /C, Pd-Eu2 O3 /C, and Pd-CeO2 /C catalysts. Theoretical analyses reveal that the coupling between Pd and Gd2 O3 promotes electron transfer through the Pd-O-Gd bridge, which induces the antibonding-orbital occupancy of Pd-*OH for the optimization of *OH adsorption in the rate-determining step of ORR. The pH-dependent microkinetic modeling shows that Pd-Gd2 O3 is close to the theoretical optimal activity for ORR, outperforming Pt under the same conditions. By its ascendancy in ORR, the Pd-Gd2 O3 /C exhibits superior performance in Zn-air battery as an air cathode, implying its excellent practicability.
Collapse
Affiliation(s)
- Shuwang Ning
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Baiyu Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Caikang Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Kang Sun
- Key Lab of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, No. 16 Suojin 5th Village, Nanjing, 210042, China
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, Xinjiang, 830011, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
16
|
Liu S, Zhang H, Ren T, Yu H, Deng K, Wang Z, Xu Y, Wang L, Wang H. Interface Engineering and Boron Modification of Pd-B/Pd Hetero-Metallene Synergistically Accelerate Oxygen Reduction Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2306014. [PMID: 37635098 DOI: 10.1002/smll.202306014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Indexed: 08/29/2023]
Abstract
2D metallene possess high surface area and excellent electron transport capability, thus enabling efficient application in oxygen reduction reaction (ORR). However, the interface regulation and electronic structure optimization of metallene are still great challenges. Herein, Pd-B/Pd hetero-metallene is constructed by interface engineering and B modification strategies for efficient electrocatalytic ORR. The 2D configuration of Pd-B/Pd hetero-metallene exposes a large number of surface atoms and unsaturated defect sites, thus providing abundant catalytic active sites and exhibiting high electron mobility. More importantly, interface engineering and B modification synergistically optimizing the electronic configuration of the metallene system. This work not only provides an effective strategy for the rational regulation of the electronic configuration of metallene, but also offers a reference for the construction of efficient ORR catalysts.
Collapse
Affiliation(s)
- Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
17
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
18
|
Yu S, Bi L, Xie X, Lu J, Chen A, Jiang H. Facile synthesis of L1 0-PtFe/C intermetallic catalysts with superior catalytic durability for the oxygen reduction reaction. Chem Commun (Camb) 2023; 59:12270-12273. [PMID: 37750926 DOI: 10.1039/d3cc03742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
An o-PtFe/C intermetallic catalyst was prepared by a facile thermal reduction method with the average particle size of only 6.6 nm in the presence of urea. The loss of mass activity is only 25.9% after 50 000 cycles. This work provides guidance on the suppression of grain coarsening for high-temperature synthesis of Pt-based intermetallic catalysts.
Collapse
Affiliation(s)
- Shengwei Yu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Liyuan Bi
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Xiang Xie
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Jiyuan Lu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Aiping Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Haibo Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
19
|
Hu Z, Yang N, Feng Y, Xu L, Hu C, Liu H, Tian S, Yang J. Synthesis of unconventional Pd-Se nanoparticles for phase-dependent ethanol electrooxidation. Chem Commun (Camb) 2023; 59:4020-4023. [PMID: 36917447 DOI: 10.1039/d2cc06785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
By tuning the amount of the Se precursors during the synthesis, orthorhombic PdSe2, cubic Pd17Se15, and monoclinic Pd7Se2 nanoparticles are synthesized, which show phase-dependent electrocatalysis for the ethanol oxidation reaction. This work advances the controllable synthesis of transition metal selenides and inspires their applications in electrocatalysis.
Collapse
Affiliation(s)
- Zhenya Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niuwa Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, Jiangsu, China
| | - Hui Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, Jiangsu, China
| | - Shaonan Tian
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, Jiangsu, China
| |
Collapse
|
20
|
Ren Y, Zang Z, Lv C, Li B, Li L, Yang X, Lu Z, Yu X, Zhang X. Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2023; 640:801-808. [PMID: 36905889 DOI: 10.1016/j.jcis.2023.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Developing highly durable and active catalysts with the morphology of structurally robust nanoframes toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acidic environment is crucial but still a great challenge to completely achieve in a single material. Herein, PtCuCo nanoframes (PtCuCo NFs) with internal support structures as enhanced bifunctional electrocatalysts were prepared by a facile one-pot approach. PtCuCo NFs exhibited remarkable activity and durability for ORR and MOR owing to the ternary compositions and the structure-fortifying frame structures. Impressively, the specific/mass activity of PtCuCo NFs were 12.8/7.5 times as large as that of commercial Pt/C for ORR in perchloric acid solution. For MOR in sulfuric acid solution, the mass/specific activity of PtCuCo NFs was 1.66 A mgPt-1/4.24 mA cm-2, which was 5.4/9.4 times as large as that of Pt/C. This work may provide a promising nanoframe material to develop dual catalysts for fuel cells.
Collapse
Affiliation(s)
- Yangyang Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zehao Zang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chenhao Lv
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Beibei Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
21
|
Chen D, Zhao Z, Chen G, Li T, Chen J, Ye Z, Lu J. Metal selenides for energy storage and conversion: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Tripodal Pd metallenes mediated by Nb 2C MXenes for boosting alkynes semihydrogenation. Nat Commun 2023; 14:661. [PMID: 36750563 PMCID: PMC9905561 DOI: 10.1038/s41467-023-36378-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
2D metallene nanomaterials have spurred considerable attention in heterogeneous catalysis by virtue of sufficient unsaturated metal atoms, high specific surface area and surface strain. Nevertheless, the strong metallic bonding in nanoparticles aggravates the difficulty in the controllable regulation of the geometry of metallenes. Here we propose an efficient galvanic replacement strategy to construct Pd metallenes loaded on Nb2C MXenes at room temperature, which is triggered by strong metal-support interaction based on MD simulations. The Pd metallenes feature a chair structure of six-membered ring with the coordination number of Pd as low as 3. Coverage-dependent kinetic analysis based on first-principles calculations reveals that the tripodal Pd metallenes promote the diffusion of alkene and inhibit its overhydrogenation. As a consequence, Pd/Nb2C delivers an outstanding turnover frequency of 10372 h-1 and a high selectivity of 96% at 25 oC in the semihydrogenation of alkynes without compromising the stability. This strategy is general and scalable considering the plentiful members of the MXene family, which can set a foundation for the design of novel supported-metallene catalysts for demanding transformations.
Collapse
|
23
|
Li W, Fu W, Bai S, Huang H, He X, Ma W, Zhang H, Wang Y. Inspired electrocatalytic performance by unique amorphous PdCu nanoparticles on black phosphorus. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
24
|
Yang H, Cheng W, Lu X, Chen Z, Liu C, Tian L, Li Z. Coupling Transition Metal Compound with Single-Atom Site for Water Splitting Electrocatalysis. CHEM REC 2023; 23:e202200237. [PMID: 36538728 DOI: 10.1002/tcr.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Single-atom site catalysts (SACs) provide an ideal platform to identify the active centers, explore the catalytic mechanism, and establish the structure-property relationships, and thus have attracted increasing interests for electrocatalytic energy conversion. Substantial endeavors have been devoted to the construction of carbon-supported SACs, and their progress have been comprehensively reviewed. Compared with carbon-supported SACs, transition metal compounds (TMCs)-supported SACs are still in their infancy in the field of electrocatalysis. However, they have also aroused ever-increasing attention for driving electrocatalytic water splitting, and emerged as an indispensable class of SACs in recent years, predominately owing to their inherently structural features, such as rich anchoring sites, surface defects, and lattice vacancy. Herein, in this review, we have systematically summarized the recent advances of a variety of TMC supported SACs toward electrocatalytic water splitting. The advanced characterization techniques and theoretical analyses for identifying and monitoring the atomic structure of SACs are firstly manifested. Subsequently, the anchoring and stabilization mechanisms for TMC supported SACs are also highlighted. Thereafter, the advances of TMC supported SACs for driving water electrolysis are systematically unraveled.
Collapse
Affiliation(s)
- Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Chao Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
25
|
Xu H, Yuan J, He G, Chen H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Advances in Anion Vacancy for Electrocatalytic Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zhao Y, Wu F, Wei J, Sun H, Yuan Y, Bao H, Li F, Zhang Z, Han S, Niu W. Designer Gold-Framed Palladium Nanocubes for Plasmon-Enhanced Electrocatalytic Oxidation of Ethanol. Chemistry 2022; 28:e202200494. [PMID: 35319121 DOI: 10.1002/chem.202200494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Surface plasmon of coinage metal nanostructures has been employed as a powerful route in boosting the performances in heterogenous catalysis. Development of efficient plasmonic nanocatalysts with high catalytic performance and efficient light harvesting properties is of vital importance. Herein, we rationally designed and synthesized a plasmonic nanocatalyst composed of Au-framed Pd nanocubes by an Ag(I)-assisted seed-mediated growth method. In the synthesis, the incorporation of Ag(I) suppresses the reduction of Au on the {100} surface of cubic Pd seeds and leads to the formation of Au nanoframes on the Pd nanocubes. The unique Au-framed Pd nanocubes can integrate the superior electrocatalytic of Pd and the outstanding plasmonic properties of Au. Thus, these nanostructures were employed as plasmonic nanocatalysts for plasmon-enhanced electrocatalytic oxidation of ethanol with improved stability.
Collapse
Affiliation(s)
- Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Jinping Wei
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Hongda Sun
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Haibo Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| |
Collapse
|
28
|
Yang X, Guo R, Cai R, Shi W, Liu W, Guo J, Xiao J. Engineering transition metal catalysts for large-current-density water splitting. Dalton Trans 2022; 51:4590-4607. [PMID: 35231082 DOI: 10.1039/d2dt00037g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemical water splitting plays a crucial role in transferring electricity to hydrogen fuel and appropriate electrocatalysts are crucial to satisfy the strict industrial demand. However, the successfully developed non-noble metal catalysts have a small tested range and the current density is usually less than 100 mA cm-2, which is still far away from the practical application standards. Aiming to provide guidance for the fabrication of more advanced electrocatalysts with a large current density, we herein systematically summarize the recent progress achieved in the field of cost-efficient and large-current-density electrocatalyst design. Beginning by illustrating the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) mechanisms, we elaborate on the concurrent issues of non-noble metal catalysts that are required to be addressed. In view of large-current-density operating conditions, some distinctive features with regard to good electrical conductivity, high intrinsic activity, rich active sites, and porous architecture are also summarized. Next, some representative large-current-density electrocatalysts are classified. Finally, we discuss the challenges associated with large-current-density water electrolysis and future pathways in the hope of guiding the future development of more efficient non-noble-metal catalysts to boost large-scale hydrogen production with less electricity consumption.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Rui Cai
- International Office of Huaihua University, Huaihua University, Huaihua 418000, PR China
| | - Wei Shi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Wenzhu Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jian Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| |
Collapse
|
29
|
Qiao Z, Ding C. Recent Progress on Polyvinyl Alcohol-Based Materials for Energy Conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04344g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic energy conversion shows a promising “bridge” to mitigate energy shortage issues and minimizes the ecological implications by synergy with the sustainable energy sources, which calls for low-cost, highly active,...
Collapse
|
30
|
Qiao W, Zha M, Yang Y, Hu G, Feng L. Pd17Se15 alloy on Se sphere with high anti-poisoning ability for alcohol fuel electrooxidation. Chem Commun (Camb) 2022; 58:10651-10654. [DOI: 10.1039/d2cc04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-deficient effect of Pd in the Pd17Se15 catalyst effectively weakens the adsorption of CO poisoning species and enhances the electrocatalytic performance of alcohol electrooxidation in an alkaline medium.
Collapse
|
31
|
Zhang Q, Wang K, Zhang M, Chen T, Li L, Shi S, Jiang R. Electronic structure optimization boosts Pd nanocrystals for ethanol electrooxidation realized by Te doping. CrystEngComm 2022. [DOI: 10.1039/d2ce00710j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Te doping greatly modifies the electronic structure of Pd and promotes the electrocatalytic performance towards EOR.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Kangqiang Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Mingqing Zhang
- Shandong Hi-speed Road & Bridge Technology Co., Ltd, Jinan 250014, China
| | - Ting Chen
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Luyan Li
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Rongyan Jiang
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
32
|
Zhang S, Zhou H, Liao H, Tan P, Tian W, Pan J. Microbial synthesis of efficient palladium electrocatalyst with high loadings for oxygen reduction reaction in acidic medium. J Colloid Interface Sci 2021; 611:161-171. [PMID: 34952270 DOI: 10.1016/j.jcis.2021.12.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022]
Abstract
Whereas limited amount of precious metal adsorbed by bacteria conflicting the needs of high loadings for better catalytic performances, cell disruption technology was adopted to smash Shewanella cells in this work, releasing abundant oxygen functional groups inside the cells for better adsorption of palladium ion. Then palladium catalysts were synthesized in two ways: 1) Pd catalyst supported on carbonized-broken-bacterial (Pd/FHNC) was obtained after direct carbonization and reduction; 2) Electrospinning technology was used to spin the broken Shewanella into fibers, and Pd nanoparticles supported on nitrogen-doped carbon nanofiber (Pd/NCNF) was prepared following carbonization and hydrogen reduction. The as-prepared catalysts exhibit excellent oxygen reduction reaction (ORR) electrocatalytic performance in the acid medium. The mass specific activities at 0.7 V of Pd/FHNC and Pd/NCNF were 0.213 A mg-1 and 0.121 A mg-1 which were 5.92 and 3.36 times than those of commercial Pd/C(0.036 A mg-1) respectively, and they also displayed higher stability than Pd/C. Furthermore, the Pd loadings of Pd/FHNC and Pd/NCNF were 21.52% and 17.13% respectively. An explanation for the improved performance is the co-doping of nitrogen and phosphorus, also the tight integration of Pd and broken-bacterial. Herein, we propose a novel and effective method for synthesis of ORR electrocatalysts.
Collapse
Affiliation(s)
- Shaohui Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, PR China
| | - Haikun Zhou
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hanxiao Liao
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, PR China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, PR China
| | - Wenying Tian
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, PR China.
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, PR China.
| |
Collapse
|