1
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Gromyko D, An S, Gorelik S, Xu J, Lim LJ, Lee HYL, Tjiptoharsono F, Tan ZK, Qiu CW, Dong Z, Wu L. Unidirectional Chiral Emission via Twisted Bi-layer Metasurfaces. Nat Commun 2024; 15:9804. [PMID: 39532874 PMCID: PMC11557933 DOI: 10.1038/s41467-024-54262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Controlling and channeling light emissions from unpolarized quantum dots into specific directions with chiral polarization remains a key challenge in modern photonics. Stacked metasurface designs offer a potential compact solution for chirality and directionality engineering. However, experimental observations of directional chiral radiation from resonant metasurfaces with quantum emitters remain obscure. In this paper, we present experimental observations of unidirectional chiral emission from a twisted bi-layer metasurface via multi-dimensional control, including twist angle, interlayer distance, and lateral displacement between the top and bottom layers, as enabled by doublet alignment lithography (DAL). First, maintaining alignment, the metasurface demonstrates a resonant intrinsic optical chirality with near-unity circular dichroism of 0.94 and reflectance difference of 74%, where a high circular dichroism greater than 0.9 persists across a wide range of angles from -11 to 11 degrees. Second, engineered lateral displacement induces a unidirectional chiral resonance, resulting in unidirectional chiral emission from the quantum dots deposited onto the metasurface. Our bi-layer metasurfaces offer a universal compact platform for efficient radiation manipulation over a wide angular range, promising potential applications in miniaturized lasers, grating couplers, and chiral nanoantennas.
Collapse
Grants
- SRG SMT 2021 169, SKI 2021-02-14, SKI 2021-04-12 Singapore University of Technology and Design (SUTD)
- NRF2021-QEP2-02-P03, NRF2021-QEP2-03-P09, NRF-CRP26-2021-0004, and NRF-CRP22-2019-0006 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF2021-QEP2-03-P09, NRF-CRP30-2023-0003 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF2021-QEP2-03-P09, NRF-CRP22-2019-0006, NRF-CRP26-2021-0004, NRF-CRP30-2023-0003 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- Career Development Award C210112019, MTC IRG M21K2c0116, M22K2c0088, DELTA-Q 2.0 C230917005 Agency for Science, Technology and Research (A*STAR)
- M22K2c0088 Agency for Science, Technology and Research (A*STAR)
- National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
Collapse
Affiliation(s)
- Dmitrii Gromyko
- Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shu An
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Sergey Gorelik
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore, 138669, Singapore
| | - Jiahui Xu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Li Jun Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Henry Yit Loong Lee
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Febiana Tjiptoharsono
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Zhi-Kuang Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| | - Zhaogang Dong
- Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore.
| | - Lin Wu
- Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore.
- Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.
| |
Collapse
|
3
|
Le D, Kreivi M, Aikio S, Heinilehto N, Sipola T, Petäjä J, Guo TL, Roussey M, Hiltunen J. Surface plasmon polariton-enhanced upconversion luminescence for biosensing applications. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3995-4006. [PMID: 39634956 PMCID: PMC11501061 DOI: 10.1515/nanoph-2024-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/02/2024] [Indexed: 12/07/2024]
Abstract
Upconversion luminescence (UCL) has great potential for highly sensitive biosensing due to its unique wavelength shift properties. The main limitation of UCL is its low quantum efficiency, which is typically compensated using low-noise detectors and high-intensity excitation. In this work, we demonstrate surface plasmon polariton (SPP)-enhanced UCL for biosensing applications. SPPs are excited by using a gold grating. The gold grating is optimized to match the SPP resonance with the absorption wavelength of upconverting nanoparticles (UCNPs). Functionalized UCNPs conjugated with antibodies are immobilized on the surface of the fabricated gold grating. We achieve an UCL enhancement up to 65 times at low excitation power density. This enhancement results from the increase in the absorption cross section of UCNPs caused by the SPP coupling on the grating surface. Computationally, we investigated a slight quenching effect in the emission process with UCNPs near gold surfaces. The experimental observations were in good agreement with the simulation results. The work enables UCL-based assays with reduced excitation intensity that are needed, for example, in scanning-free imaging.
Collapse
Affiliation(s)
- Duc Le
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| | - Marjut Kreivi
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| | - Sanna Aikio
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| | - Noora Heinilehto
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| | - Teemu Sipola
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| | - Jarno Petäjä
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| | - Tian-Long Guo
- Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101Joensuu, Finland
| | - Matthieu Roussey
- Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101Joensuu, Finland
| | - Jussi Hiltunen
- Sensing Solutions, VTT Technical Research Centre of Finland, 90570 Oulu, Finland
| |
Collapse
|
4
|
Cui L, An S, Yit Loong Lee H, Liu GX, Wang H, Wang HY, Wu L, Dong Z, Wang L. Dynamic Ultrastrong Coupling in a 2 nm Gap Plasmonic Cavity at the Sub-Picosecond Scale. NANO LETTERS 2024. [PMID: 39038175 DOI: 10.1021/acs.nanolett.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Localized surface plasmon resonances (LSPRs) can enhance the electromagnetic fields on metallic nanostructures upon light illumination, providing an approach for manipulating light-matter interactions at the sub-wavelength scale. However, currently, there is no thorough investigation of the physical mechanism in the dynamic formation of the strongly coupled LSPRs on sub-5 nm plasmonic cavities at the sub-picosecond scale. In this work, through femtosecond broadband transient absorption spectroscopy, we reveal the dynamic ultrastrong coupling processes in a nanoparticle-in-trench (NPiT) structure containing 2 nm gap cavities, and demonstrate a coherent motional coupling between vibrating AuNPs and the nanogaps. We achieve a maximum Rabi splitting energy of ∼660 meV in the sub-picosecond hot-electron relaxation time scale under the resonant excitation of the nanogap cavity's LSPR, reaching the ultrastrong coupling regime. This leads to a change of global vibration modes for the 2 nm gap cavity, potentially related to the dynamical Casimir effect with nanogap resonators.
Collapse
Affiliation(s)
- Lin Cui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shu An
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Henry Yit Loong Lee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Guang-Xin Liu
- Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Republic of Singapore
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lin Wu
- Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Republic of Singapore
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, Innovis #16-16, Singapore 138632, Republic of Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
5
|
Zhao Q, Tian X, Ren L, Su Y, Su Q. Understanding of Lanthanide-Doped Core-Shell Structure at the Nanoscale Level. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1063. [PMID: 38921939 PMCID: PMC11206442 DOI: 10.3390/nano14121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The groundbreaking development of lanthanide-doped core-shell nanostructures have successfully achieved precise optical tuning of rare-earth nanocrystals, leading to significant improvements in energy transfer efficiency and facilitating multifunctional integration. Exploring the atomic-level structural, physical, and optical properties of rare-earth core-shell nanocrystals is essential for advancing our understanding of their fundamental principles and driving the development of emerging applications. However, our knowledge of the atomic-level structural details of rare-earth nanocrystal core-shell structures remains limited. This review provides a comprehensive discussion of synthesis strategies, characterization techniques, interfacial ion-mixing phenomena, strain effects, and spectral modulation in core-shell structures of rare-earth-doped nanocrystals. Additionally, we prospectively discuss the challenges encountered in studying the fine structures of rare-earth-doped core-shell nanocrystals, particularly the increasing demand for researchers to integrate interdisciplinary knowledge and utilize high-end precision instruments.
Collapse
Affiliation(s)
- Qing Zhao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xinle Tian
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Langtao Ren
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, Singapore 138672, Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Zhang F, Oiticica PRA, Abad-Arredondo J, Arai MS, Oliveira ON, Jaque D, Fernandez Dominguez AI, de Camargo ASS, Haro-González P. Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles. NANO LETTERS 2024; 24:3785-3792. [PMID: 38497999 PMCID: PMC10979430 DOI: 10.1021/acs.nanolett.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an "average effect" that explains the magnitude and spatial extension of luminescence enhancement.
Collapse
Affiliation(s)
- Fengchan Zhang
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - Jaime Abad-Arredondo
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Marylyn Setsuko Arai
- São
Carlos Institute of Physics, University
of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Daniel Jaque
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio I. Fernandez Dominguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Andrea Simone Stucchi de Camargo
- Federal
Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
- Friedrich
Schiller University (FSU), Jena 07737, Germany
| | - Patricia Haro-González
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Schiattarella C, Romano S, Sirleto L, Mocella V, Rendina I, Lanzio V, Riminucci F, Schwartzberg A, Cabrini S, Chen J, Liang L, Liu X, Zito G. Directive giant upconversion by supercritical bound states in the continuum. Nature 2024; 626:765-771. [PMID: 38383627 PMCID: PMC10881401 DOI: 10.1038/s41586-023-06967-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2023] [Indexed: 02/23/2024]
Abstract
Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.
Collapse
Affiliation(s)
- Chiara Schiattarella
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Naples, Italy
| | - Silvia Romano
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Naples, Italy
| | - Luigi Sirleto
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Naples, Italy
| | - Vito Mocella
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Naples, Italy
| | - Ivo Rendina
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Vittorino Lanzio
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fabrizio Riminucci
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stefano Cabrini
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jiaye Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Liangliang Liang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Centre for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
| | - Gianluigi Zito
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Naples, Italy.
| |
Collapse
|
8
|
Zhu X, Yang M, Zhang H. Over 10 4 -fold amplified upconversion luminescence of lanthanide nanocrystals through optical oscillator-like system. LUMINESCENCE 2024; 39:e4611. [PMID: 37899383 DOI: 10.1002/bio.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023]
Abstract
Recently, lanthanide (Ln) luminescent nanocrystals have attracted increasing attention in various fields such as biomedical imaging, lasers, and anticounterfeiting. However, due to the forbidden 4f-4f transition of lanthanide ions, the absorption cross-section and luminescence brightness of lanthanide nanocrystals are limited. To address the challenge, we constructed an optical oscillator-like system to repeatedly simulate lanthanide nanocrystals to enhance the absorption efficiency of lanthanide ions on excitation photons. In this optical system, the upconversion luminescence (UCL) of Tm3+ emission of ~450 nm excited by a 980 nm laser can be amplified by a factor beyond 104 . The corresponding downshifting luminescence of Tm3+ at 1460 nm was enhanced by three orders of magnitude. We also demonstrated that the significant luminescence enhancement in the designed optical oscillator-like system was general for various lanthanide nanocrystals including NaYF4 :Yb3+ /Ln3+ , NaErF4 @NaYF4 and NaYF4 :Yb3+ /Ln3+ @NaYF4 :Yb3+ @NaYF4 (Ln = Er, Tm, Ho) regardless of the wavelengths of excitation sources (808 and 980 nm). The mechanism study revealed that both elevated laser power in the optical system and multiple excitations on lanthanide nanocrystals were the main reason for the luminescence amplification. Our findings may benefit the future development of low-threshold upconversion and downshifting luminescence of lanthanide nanocrystals and expand their applications.
Collapse
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Mingzhu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Liu T, Liu X, Feng Y, Yao CJ. Advances in plasmonic enhanced luminenscence of upconversion nanoparticles. MATERIALS TODAY CHEMISTRY 2023; 34:101788. [DOI: 10.1016/j.mtchem.2023.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Roy P, Zhu S, Claude JB, Liu J, Wenger J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS NANO 2023; 17:22418-22429. [PMID: 37931219 PMCID: PMC10690780 DOI: 10.1021/acsnano.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/08/2023]
Abstract
Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.
Collapse
Affiliation(s)
- Prithu Roy
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Siyuan Zhu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Benoît Claude
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jie Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jérôme Wenger
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
11
|
Gao Y, Liu L, Murai S, Shinozaki K, Tanaka K. Enhancing Up-Conversion Luminescence Using Dielectric Metasurfaces: Role of the Quality Factor of Resonance at a Pumping Wavelength. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45960-45969. [PMID: 37725681 DOI: 10.1021/acsami.3c06877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Photonic applications of up-conversion luminescence (UCL) suffer from poor external quantum yield owing to a low absorption cross-section of UCL nanoparticles (UCNPs) doped with lanthanide ions. In this regard, plasmonic nanostructures have been proposed for enhancing UCL intensity through strong electromagnetic local-field enhancement; however, their intrinsic ohmic loss opens additional nonradiative decay channels. Herein, we demonstrate that dielectric metasurfaces can overcome this disadvantage. A periodic array of amorphous-silicon nanodisks serves as a metasurface on which a layer of UCNPs is self-assembled. Sharp resonances supported by the metasurface overlap the absorption wavelength (λ = 980 nm) of UCNPs to excite them, resulting in the enhancement of UCL intensity. We further sharpen the resonances through rapid thermal annealing (RTA) of the metasurface, crystallizing silicon to reduce intrinsic optical losses. By optimizing the RTA condition (at 1000 °C for 20 min in N2/H2 (3 vol %) atmosphere), the resonance quality factor improves from 17.2 to 32.9, accompanied by an increase in the enhancement factor of the UCL intensity from 86- to over 600-fold. Moreover, a reduction in the intrinsic optical losses mitigates the UCL thermal quenching under a high excitation density. These findings provide a strategy for increasing light-matter interactions in nanophotonic composite systems and promote UCNP applications.
Collapse
Affiliation(s)
- Yuan Gao
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Libei Liu
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Murai
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Shinozaki
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| | - Katsuhisa Tanaka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Guo D, Xu Y, Ruan J, Tong J, Li Y, Zhai T, Song Y. Nonpolar Solvent Modulated Inkjet Printing of Nanoparticle Self-Assembly Morphologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208161. [PMID: 37191293 DOI: 10.1002/smll.202208161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Patterning of luminescent nanomaterials is critical in the fields of display and information encryption, and inkjet printing technology have shown remarkable significance with the advantage of fast, large-scalable and integrative. However, inkjet printing nanoparticle deposits with high-resolution and well controlled morphology from nonpolar solvent droplets is still challenging. Herein, a facile approach of nonpolar solvent modulated inkjet printing of nanoparticles self-assembly patterns driven by the shrinkage of the droplet and inner solutal convection is proposed. Through regulating the solvent composition and nanoparticle concentration, multicolor light-emissive upconversion nanoparticle self-assembly microarrays with tunable morphologies are achieved, showing the integration of designable microscale morphologies and photoluminescences for multimodal anti-counterfeit. Furthermore, inkjet printing of nanoparticles self-assembled continuous lines with adjustable morphologies by controlling the coalescence and drying of the ink droplets is achieved. The high resolution of inkjet printing microarrays and continuous lines' width < 5 and 10 µm is realized, respectively. This nonpolar solvent-modulated inkjet printing of nanoparticle deposits approach facilitates the patterning and integration of different nanomaterials, and is expected to provide a versatile platform for fabricating advanced devices applied in photonics integration, micro-LED, and near-field display.
Collapse
Affiliation(s)
- Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanan Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jun Ruan
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Junhua Tong
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yixuan Li
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Miao P, Zhou Y, Li C, Li J, Wang W, Ma T, Lv Y, Song Z, Zhang J, Yan M. Near-infrared light-induced photoelectrochemical biosensor based on plasmon-enhanced upconversion nanocomposites for microRNA-155 detection with cascade amplifications. Biosens Bioelectron 2023; 226:115145. [PMID: 36787662 DOI: 10.1016/j.bios.2023.115145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Herein, a novel near-infrared (NIR) light-driven photoelectrochemical (PEC) biosensor based on NaYF4:Yb3+, Er3+@Bi2MoO6@Bi (NYF@BMO@Bi) nanocomposites was elaborately developed to achieve highly sensitive detection of microRNA-155 (miRNA-155). To realize signal enhancement, the coupled plasmonic bismuth (Bi) nanoparticles were constructed as an energy relay to facilitate the transfer of energy from NaYF4:Yb3+, Er3+ to Bi2MoO6, ultimately enabling the efficient separation of electron-hole pairs of Bi2MoO6 under the irradiation of a 980 nm laser. For constructing biosensing system, the initial signal was firstly amplified after the addition of alkaline phosphatase (ALP) in conjunction with the biofunctionalized NYF@BMO@Bi nanocomposites, which could catalyze the conversion of ascorbic acid 2-phosphate into ascorbic acid, and then consumed the photoacoustic holes created on the surface of Bi2MoO6 for the enlarging photocurrent production. Upon addition of target miRNA-155, the cascade signal amplification process was triggered while the ALP-modified DNA sequence was replaced and then followed by the initiation of a simulated biocatalytic precipitation reaction to attenuate the photocurrent response. On account of the NIR-light-driven and cascade amplifications strategy, the as-constructed biosensor was successfully utilized for the accurate determination of miRNA-155 ranging from 1 fM to 0.1 μM with a detection limit of 0.32 fM. We believed that the proposed nanocomposites-based NIR-triggered PEC biosensor could provide a promising platform for effective monitoring other tumor biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yongqing Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chengfang Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Juan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tingbin Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yanfeng Lv
- Department of Colorectal & Anal Surgery, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
14
|
Li Z, You Q, Wang H, Zhang L, Zhang D, Jia S, Fang Y, Wang P. Nanowire dimer optical antenna brightens the surface defects of silicon. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1723-1731. [PMID: 39634115 PMCID: PMC11501950 DOI: 10.1515/nanoph-2022-0742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 12/07/2024]
Abstract
Plasmonic hot spots located between metallic dimer nanostructures have been utilized comprehensively to achieve efficient light emission. However, different from the enhancement occurred in the plasmonic hot spot, the investigation of light emission off the hot spot on submicron scale remains challenge. In this work, we have constructed a plasmonic nanowire dimer (NWD) system to brighten the light emission of the surface defects of silicon off the hot spot on the submicron scale. The NWD can trap light through plasmonic gap, then, the excited emitter on the submicron scale can radiate light efficiently by coupling with the dipole gap plasmonic mode. Furthermore, the coupling of dipole plasmonic mode with the emitters can be tuned by changing the gap size, and then photoluminescence emission was drastically enhanced up to 126 folds. Theoretical simulations reveal the photoluminescence enhancement arises from the combination of the NWD's high radiation efficiency, Purcell enhancement, efficient redirection of the emitted photoluminescence and the excitation enhancement. In this study, the photoluminescence signal can be effectively enhanced by placing nano-antenna patch on the detected low-quantum-efficiency emitters, which may open up a pathway toward controlling plasmonic gap mode enhanced light emission off the hot spot on submicron scale.
Collapse
Affiliation(s)
- Ze Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot010021, China
| | - Qingzhang You
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
| | - Hui Wang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
| | - Lisheng Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
| | - Duan Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
- Elementary Educational College, Capital Normal University, Beijing100048, China
| | - Shangtong Jia
- State Key Laboratory for Mesoscopic Physics School of Physics, Peking University, Beijing100871, China
| | - Yan Fang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
| | - Peijie Wang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing100048, China
| |
Collapse
|
15
|
Zhang S, Zhang J, Goh WP, Liu Y, Tjiptoharsono F, Lee HYL, Jiang C, Ding J, Yang JKW, Dong Z. Reversible electrical switching of nanostructural color pixels. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1387-1395. [PMID: 39634597 PMCID: PMC11501933 DOI: 10.1515/nanoph-2022-0646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/29/2022] [Indexed: 12/07/2024]
Abstract
Electrical switching of nanophotonic structural color elements is a promising approach towards addressable color switching pixels for next generation reflective displays. However, electrical switching between the primary colors to colorless near-white state remains a challenge. Here, we present a reversible electrical switching approach, relying on the electrocoagulation of Ag nanoparticles between silicon nanostructures that support Mie resonances. The electrodeposited Ag nanoparticles enable the excitation of the hybrid plasmon-Mie resonance as supported on Ag-silicon nanostructures, resulting in a large spectral transformation. Importantly, this process is reversible. This device design outperforms other designs in terms of electrotonic color control since it is highly stable and reliable for use in high-resolution reflective displays, such as colored electronic papers and smart display glass, where the combination is scalable to other nanostructure designs and electrolytic solutions.
Collapse
Affiliation(s)
- Shutao Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore
| | - Jun Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | - Yan Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | - Febiana Tjiptoharsono
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | - Henry Yit Loong Lee
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore
| | - Joel K. W. Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore
| |
Collapse
|
16
|
Gao Y, Murai S, Shinozaki K, Tanaka K. Up-to-Five-Photon Upconversion from Near-Infrared to Ultraviolet Luminescence Coupled to Aluminum Plasmonic Lattices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9533-9541. [PMID: 36754842 DOI: 10.1021/acsami.2c14990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The incorporation of upconversion luminescence (UCL) materials into various plasmonic structures promotes light-matter interactions in nanophotonic systems. It has been experimentally demonstrated that UCL enhancement entailing two photons exhibits a quadratic dependence on the excitation intensity. However, in the field of plasmonics, there have not been sufficient studies on high-order multi-photon upconversion processes. We report up-to-five-photon UCL, wherein λ = 1550 nm near-infrared light is converted to 382 nm ultraviolet light, from core-inert shell nanoparticles coupled to aluminum plasmonic lattices. The five-photon UCL intensity of nanoparticles on the plasmonic lattice is over 800 times stronger than that on the flat glass. We demonstrate that the enhancement of UCL scales with the nth power of the local field enhancement for n-photon process. These findings give a strategy to obtain high-order multi-photon UPL with aluminum plasmonic nanostructures and can contribute to anti-counterfeiting application.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 6158510, Japan
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Shunsuke Murai
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 6158510, Japan
| | - Kenji Shinozaki
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 5638577, Japan
| | - Katsuhisa Tanaka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 6158510, Japan
| |
Collapse
|
17
|
Bian H, Tang C, Zhao H, Qin X, Liu X. Anomalous Anisotropic Dopant Distribution in Hexagonal Yttrium Sublattice. NANO LETTERS 2023; 23:979-984. [PMID: 36652276 DOI: 10.1021/acs.nanolett.2c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Trivalent lanthanides are commonly incorporated into sodium yttrium fluoride nanocrystals to enhance their optical properties. Lanthanides are expected to randomly replace trivalent yttrium cations due to their isovalent nature, and the dopant-dopant distance decreases with increasing dopant concentration. Combining spectroscopy with quantum mechanical calculations, we find that large lanthanides exhibit an anisotropic distribution in the hexagonal yttrium sublattice at low dopant concentrations. This counterintuitive substitution suggests the formation of one-dimensional dimers or chains with short dopant-dopant distances. Our study of the distance-sensitive cross-relaxation between Nd3+ dopants in β-NaYF4 nanocrystals confirms that the concentration quenching threshold is lower than that of their cubic counterparts, consistent with the proposed chain-like model. Moreover, we demonstrate modulation of the anisotropic distribution by microstrain management via alkali metal codoping. Research into dopant distribution in inorganic crystals may enable the development of new materials and properties for future challenges.
Collapse
Affiliation(s)
- Hongyu Bian
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China518060
- Department of Chemistry, National University of Singapore, Singapore117543
| | - Caisheng Tang
- Department of Chemistry, National University of Singapore, Singapore117543
| | - He Zhao
- Department of Chemistry, National University of Singapore, Singapore117543
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore117543
| | - Xiaogang Liu
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China518060
- Department of Chemistry, National University of Singapore, Singapore117543
| |
Collapse
|
18
|
He H, Cen M, Wang J, Xu Y, Liu J, Cai W, Kong D, Li K, Luo D, Cao T, Liu YJ. Plasmonic Chiral Metasurface-Induced Upconverted Circularly Polarized Luminescence from Achiral Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53981-53989. [PMID: 36378812 DOI: 10.1021/acsami.2c13267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chirality induction, transfer, and manipulation have aroused great interest in achiral nanomaterials. Here, we demonstrate strong upconverted circularly polarized luminescence from achiral core-shell upconversion nanoparticles (UCNPs) via a plasmonic chiral metasurface-induced optical chirality transfer. The Yb3+-sensitized core-shell UCNPs with good dispersity exhibit intense upconversion luminescence of Tm3+ and Nd3+ through the energy transfer process. By spin-coating the core-shell UCNPs on this chiral metasurface, strong enhancement and circular polarization modulation of upconversion luminescence can be achieved due to resonant coupling between surface plasmons and upconversion nanoparticles. In the UCNPs-on-metasurface composite, a significant upconversion luminescence enhancement can be achieved with a maximum enhancement factor of 32.63 at 878 nm and an overall enhancement factor of 11.61. The luminescence dissymmetry factor of the induced upconverted circularly polarized luminescence can reach 0.95 at the emission wavelength of 895 nm. The UCNPs-on-metasurface composite yields efficient modulation for the emission intensity and polarization of UCNPs, paving new pathways to many potential applications in imaging, sensing, and anticounterfeiting fields.
Collapse
Affiliation(s)
- Huilin He
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Harbin Institute of Technology, Harbin 150001, China
| | - Mengjia Cen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Dalian University of Technology, Dalian 116024, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Xu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Delai Kong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tun Cao
- Dalian University of Technology, Dalian 116024, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Abdelraouf OAM, Wang Z, Liu H, Dong Z, Wang Q, Ye M, Wang XR, Wang QJ, Liu H. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS NANO 2022; 16:13339-13369. [PMID: 35976219 DOI: 10.1021/acsnano.2c04628] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metasurfaces, a two-dimensional (2D) form of metamaterials constituted by planar meta-atoms, exhibit exotic abilities to tailor electromagnetic (EM) waves freely. Over the past decade, tremendous efforts have been made to develop various active materials and incorporate them into functional devices for practical applications, pushing the research of tunable metasurfaces to the forefront of nanophotonics. Those active materials include phase change materials (PCMs), semiconductors, transparent conducting oxides (TCOs), ferroelectrics, liquid crystals (LCs), atomically thin material, etc., and enable intriguing performances such as fast switching speed, large modulation depth, ultracompactness, and significant contrast of optical properties under external stimuli. Integration of such materials offers substantial tunability to the conventional passive nanophotonic platforms. Tunable metasurfaces with multifunctionalities triggered by various external stimuli bring in rich degrees of freedom in terms of material choices and device designs to dynamically manipulate and control EM waves on demand. This field has recently flourished with the burgeoning development of physics and design methodologies, particularly those assisted by the emerging machine learning (ML) algorithms. This review outlines recent advances in tunable metasurfaces in terms of the active materials and tuning mechanisms, design methodologies, and practical applications. We conclude this review paper by providing future perspectives in this vibrant and fast-growing research field.
Collapse
Affiliation(s)
- Omar A M Abdelraouf
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ziyu Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ming Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Jie Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
21
|
Nanocavity-induced trion emission from atomically thin WSe 2. Sci Rep 2022; 12:15861. [PMID: 36151265 PMCID: PMC9508186 DOI: 10.1038/s41598-022-20226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Exciton is a bosonic quasiparticle consisting of a pair of electron and hole, with promising potentials for optoelectronic device applications, such as exciton transistors, photodetectors and light emitting devices. However, the charge-neutral nature of excitons renders them challenging to manipulate using electronics. Here we present the generation of trions, a form of charged excitons, together with enhanced exciton resonance in monolayer WSe2. The excitation of the trion quasiparticles is achieved by the hot carrier transport from the integrated gold plasmonic nanocavity, formed by embedding monolayer WSe2 between gold nanoparticles and a gold film. The nanocavity-induced negatively charged trions provide a promising route for the manipulation of excitons, essential for the construction of all-exciton information processing circuits.
Collapse
|
22
|
Yan Y, He J, Wang M, Yang L, Jiang Y. Microsphere Photonic Superlens for a Highly Emissive Flexible Upconversion-Nanoparticle-Embedded Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24636-24647. [PMID: 35580230 DOI: 10.1021/acsami.2c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing upconversion luminescence (UCL) to overcome the intrinsically low conversion efficiency of upconversion nanoparticles (UCNPs) poses a fundamental challenge. Photonic nanostructures are the efficient approaches for UCL enhancement by tailoring the local electromagnetic fields. Unfortunately, such nanostructures are sensitive to environmental conditions, and the regulation strength is varied in flexible applications. Here, we report giant UCL enhancement from a flexible UCNP-embedded film coupled with a microsphere photonic superlens (MPS), by which the enhancement ratio of UCL is over 104-fold under 808 nm excitation down to 0.72 mW. The enhancement pathways of MPS-enhanced UCL are attributed to Mie-resonant nanofocusing for high excitation-photon density, optical whispering-gallery modes (WGMs) for fast radiative decay, and the directional antenna effect for far-field emission confinement. The contribution of optical resonance in the MPS to suppressing the phonon-induced nonradiative transition and thermal quenching is experimentally validated. The UCL quantum yield is therefore improved by 3-fold to 4.20% under 120 mW/cm2 near-infrared excitation, consistent with the enhancement ratio via the Purcell effect of WGMs. Furthermore, the MPS demonstrates the robust optical regulation capability toward flexible applications, opening up new opportunities for facilitating multiphoton upconversion in wearable optoelectrical devices for nanoimaging, biosensing, and energy conversion in the future.
Collapse
Affiliation(s)
- Yinzhou Yan
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing He
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Mengyuan Wang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lixue Yang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
23
|
Twinned-Au-tip-induced growth of plasmonic Au-Cu Janus nanojellyfish in upconversion luminescence enhancement. J Colloid Interface Sci 2022; 624:196-203. [PMID: 35660888 DOI: 10.1016/j.jcis.2022.05.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
The metallic Janus nanoparticle is an emerging plasmonic nanostructure that has attracted attention in the fields of materials science and nanophotonics. The instability of the Cu nanostructure leads to very complex nucleation and growth kinetics, and synthesis of Cu Janus nanoparticle has challenges. Here, we report a new method for synthesis of Au-Cu Janus nanojellyfish (JNF) by using twinned tips of Au nanoflower (NF) as seeds. The twinned nanotip of the Au NF and the large lattice mismatch between Au and Cu can induce formation of twin defects during the growth process, resulting in asymmetric deposition of Cu atoms. The symmetry-breaking using different sizes of Au NF and Cu nanodomains within the Au-Cu JNF can controllably change the localized surface plasmon resonance (LSPR) modes. The asymmetric Au-Cu JNF can induce plasmon coupling between dipolar and multipolar modes, which leads to clear electric-field enhancement in the near-infrared region. An Au-Cu JNF with multiple LSPR modes was chosen to simultaneously match the excitation and emission bands of the lanthanide-doped upconversion nanoparticles (UCNPs). A 5000-fold enhancement of the upconversion luminescence was achieved by using single plasmonic Au-Cu JNF. The Au-Cu JNF can also provide a guide for new metallic Janus nanoparticles in the fields of plasmonic, photothermal conversion, and nanomotors.
Collapse
|
24
|
Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and Transformative Metaphotonics with Emerging Materials. Chem Rev 2022; 122:15414-15449. [PMID: 35549165 DOI: 10.1021/acs.chemrev.1c01029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan S Sinev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.,Ioffe Institute, Russian Academy of Science, St. Petersburg 194021, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
25
|
Sahu AK, Raj S. Understanding the Coupling Mechanism of Gold Nanostructures by Finite-Difference Time-Domain Method. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
27
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Han JH, Kim D, Kim J, Kim G, Kim JT, Jeong HH. Responsive photonic nanopixels with hybrid scatterers. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1863-1886. [PMID: 39633928 PMCID: PMC11501278 DOI: 10.1515/nanoph-2021-0806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/07/2024]
Abstract
Metallic and dielectric nanoscatterers are optical pigments that offer rich resonating coloration in the subwavelength regime with prolonged material consistency. Recent advances in responsive materials, whose mechanical shapes and optical properties can change in response to stimuli, expand the scope of scattering-based colorations from static to active. Thus, active color-changing pixels are achieved with extremely high spatial resolution, in conjunction with various responsive polymers and phase-change materials. This review discusses recent progress in developing such responsive photonic nanopixels, ranging from electrochromic to other color-changing concepts. We describe what parameters permit modulation of the scattering colors and highlight superior functional devices. Potential fields of application focusing on imaging devices, including active full-color printing and flexible displays, information encryption, anticounterfeiting, and active holograms, are also discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| |
Collapse
|
29
|
Mu Z, Gu H, Chen Q, Li J, He X. FDTD Modeling of Au/Ag Nanoparticles Incorporated Au/Ag Photonic Crystal for Seeking the Maximal Localized Electric Field. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongde Mu
- Jiangsu Cancer Hospital Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009 P. R. China
| | - Hongcheng Gu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 P. R. China
| | - Qiang Chen
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 P. R. China
| | - Jianqing Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing 210009 P. R. China
| | - Xia He
- Jiangsu Cancer Hospital Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009 P. R. China
| |
Collapse
|
30
|
Fu H, Hu C, Liu J, Zhang Q, Xu JY, Jiang GJ, Liu M. An overview of boosting lanthanide upconversion luminescence through chemical methods and physical strategies. CrystEngComm 2022. [DOI: 10.1039/d2ce01206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide-doped upconversion nanoparticles have attracted extensive research interest due to their promising applications in various fields.
Collapse
Affiliation(s)
- Huhui Fu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Changhe Hu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Jie Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Qi Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - J. Y. Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - G. J. Jiang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - M. Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| |
Collapse
|
31
|
Zhang H, Zhao M, Ábrahám IM, Zhang F. Super-Resolution Imaging With Lanthanide Luminescent Nanocrystals: Progress and Prospect. Front Bioeng Biotechnol 2021; 9:692075. [PMID: 34660546 PMCID: PMC8514657 DOI: 10.3389/fbioe.2021.692075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Stimulated emission depletion (STED) nanoscopy has overcome a serious diffraction barrier on the optical resolution and facilitated new discoveries on detailed nanostructures in cell biology. Traditional fluorescence probes employed in the super-resolution imaging approach include organic dyes and fluorescent proteins. However, some limitations of these probes, such as photobleaching, short emission wavelengths, and high saturation intensity, still hamper the promotion of optical resolution and bio-applications. Recently, lanthanide luminescent probes with unique optical properties of non-photobleaching and sharp emissions have been applied in super-resolution imaging. In this mini-review, we will introduce several different mechanisms for lanthanide ions to achieve super-resolution imaging based on an STED-like setup. Then, several lanthanide ions used in super-resolution imaging will be described in detail and discussed. Last but not least, we will emphasize the future challenges and outlooks in hope of advancing the next-generation lanthanide fluorescent probes for super-resolution optical imaging.
Collapse
Affiliation(s)
- Hongxin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| | - Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| | - István M Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Wu Y, Chan SY, Xu J, Liu X. Multiphoton Upconversion Materials for Photocatalysis and Environmental Remediation. Chem Asian J 2021; 16:2596-2609. [PMID: 34403201 DOI: 10.1002/asia.202100751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Indexed: 11/07/2022]
Abstract
Solar-driven photocatalysis holds great potential for energy conversion, environmental remediation, and sustainable chemistry. However, practical applications of conventional photocatalytic systems have been constrained by their insufficient ability to harvest solar radiation in the infrared spectrum. Lanthanide-doped upconversion materials possess high photostability, tunable absorption, and the ability to convert low-energy infrared radiation into high-energy emission, making them attractive for infrared-driven photocatalysis. This review highlights essential principles for rational design of efficient photocatalysts. Particular emphasis is placed on current state-of-the-arts that offer enhanced upconversion luminescence efficiency. We also summarize recent advances in lanthanide-doped upconversion materials for photocatalysis. We conclude with new challenges and prospects for future developments of infrared-driven photocatalysts.
Collapse
Affiliation(s)
- Yiming Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Institution 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaogang Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, Institution 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
33
|
Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chem Rev 2021; 121:9165-9195. [PMID: 34327987 DOI: 10.1021/acs.chemrev.1c00034] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet-triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.
Collapse
Affiliation(s)
- Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|