1
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Huang Y, Zhang Q, Li YC, Yao Y, Hu Y, Ren S. Chemical Tuning Meets 2D Molecular Magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208919. [PMID: 36353899 DOI: 10.1002/adma.202208919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
2D magnets provoke a surge of interest in large anisotropy in reduced dimensions and are promising for next-generation information technology where dynamic magnetic tuning is essential. Until recently, the crucial metal-organic magnet Cr(pyz)2 ·xLiCl·yTHF with considerable high coercivity and high-temperature magnetic order opens up a new platform to control magnetism in metal-organic materials at room temperature. Here, an in-situ chemical tuning route is reported to realize the controllable transformation of low-temperature magnetic order into room-temperature hard magnetism in Cr(pyz)2 ·xLiCl·yTHF. The chemical tuning via electrochemical lithiation and solvation/desolvation exhibits continuously variable magnetic features from cryogenic magnetism to the room-temperature optimum performance of coercivity (Hc ) of 8500 Oe and energy product of 0.6 MGOe. Such chemically flexible tunability of room-temperature magnetism is ascribed to the different degrees of lithiation and solvation that modify the stoichiometry and Cr-pyrazine coordination framework. Furthermore, the additively manufactured hybrid magnets show air stability and electromagnetic induction, providing potential applications. The findings here suggest chemical tuning as a universal approach to control the anisotropy and magnetism of 2D hybrid magnets at room temperature, promising for data storage, magnetic refrigeration, and spintronics.
Collapse
Affiliation(s)
- Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qiang Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuguang C Li
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yu Yao
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yong Hu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in Energy, Environment, and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
3
|
Molecular magneto-ionic proton sensor in solid-state proton battery. Nat Commun 2022; 13:7056. [PMID: 36396649 PMCID: PMC9672057 DOI: 10.1038/s41467-022-34874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
High proton conductivity originated from its small size and the diffusion-free Grotthuss mechanism offers immense promise for proton-based magneto-ionic control of magnetic materials. Despite such promise, the realization of proton magneto-ionics is hampered by the lack of proton-responsive magnets as well as the solid-state sensing method. Here, we report the proton-based magneto-ionics in molecule-based magnet which serves as both solid-state proton battery electrode and radiofrequency sensing medium. The three-dimensional hydrogen-bonding network in such a molecule-based magnet yields a high proton conductivity of 1.6 × 10-3 S cm-1. The three-dimensional printed vascular hydrogel provides the on-demand proton stimulus to enable magneto-ionics, where the Raman spectroscopy shows the redox behavior responsible for the magnetism control. The radiofrequency proton sensor shows high sensitivity in a wide proton concentration range from 10-6 to 1 molar under a low working radiofrequency and magnetic field of 1 GHz and 405 Oe, respectively. The findings shown here demonstrate the promising sensing application of proton-based magneto-ionics.
Collapse
|
4
|
Huang Y, Gong W, Zhang G, Li Z, Lin H, Yan Q, Ren S. Dimensional Transformation of Molecular Magnetic Materials. ACS NANO 2022; 16:13232-13240. [PMID: 35938918 DOI: 10.1021/acsnano.2c06912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) magnetic layered materials have revolutionized size dependent magnetism to manipulate spin-based devices. However, it has been challenging to artificially create 2D magnetic materials from three-dimensional (3D) crystal structures with a variety of material groups. Here, we present the dimensionality manipulation via cation exchange of a 3D Prussian blue analogue [RbMnFe(CN)6] toward a 2D magnetic sheet [(K,Rb)(V,Mn)(Cr,Fe)(CN)6] with the magnetic ordering temperature rising from 12 to 330 K. Such a 2D magnetic sheet achieves crystalline V-Cr coordination in the Prussian blue lattice with pronounced anisotropy and stimuli responsiveness. The pressure dependent magnetic tunability of such 2D networks is predicted using first-principles calculations and demonstrated using the phase transitions of the hydrogel. This previously unobserved phenomenon of dimensional manipulation of a bulk crystal structure provides a rational strategy to expand the diversity and chemical compositions of 2D molecular magnetic material libraries.
Collapse
Affiliation(s)
- Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Zheng Li
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environment and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
5
|
Abstract
Magneto-ionics, real-time ionic control of magnetism in solid-state materials, promise ultralow-power memory, computing, and ultralow-field sensor technologies. The real-time ion intercalation is also the key state-of-charge feature in rechargeable batteries. Here, we report that the reversible lithiation/delithiation in molecular magneto-ionic material, the cathode in a rechargeable lithium-ion battery, accurately monitors its real-time state of charge through a dynamic tunability of magnetic ordering. The electrochemical and magnetic studies confirm that the structural vacancy and hydrogen-bonding networks enable reversible lithiation and delithiation in the magnetic cathode. Coupling with microwave-excited spin wave at a low frequency (0.35 GHz) and a magnetic field of 100 Oe, we reveal a fast and reliable built-in magneto-ionic sensor monitoring state of charge in rechargeable batteries. The findings shown herein promise an integration of molecular magneto-ionic cathode and rechargeable batteries for real-time monitoring of state of charge.
Collapse
|