1
|
Li XF, Wang J, Wu YT, Zhou Y, Zhu QQ, Cai P, Wang A, Shi Y, Wang L, Jin S, Zhang FL, Li JF. Spectral Analysis for Photon Emission of Rare-Earth Ions in Single Plasmonic Hot Spot. Anal Chem 2025; 97:6753-6761. [PMID: 40119788 DOI: 10.1021/acs.analchem.4c07105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Rare earth ion luminescent materials have attracted extensive attention due to their wide applications in biochemical sensing and bioimaging. However, the low quantum yield and weak luminescence intensity have restricted their further development. Realizing the modulation of rare-earth ions' emission behavior has become a hot topic in the interdisciplinary fields of materials and chemometrics. Herein, the regulation of the electron decay process and emission of photon signals of rare earth ion (Eu3+) has been achieved in a well-defined plasmonic nanocavity. This nanocavity consists of Ag shell-isolated nanoparticles (SHINs) and an ultraflat Au film, which are separated by a polymer dielectric spacer and CaF2:Eu3+ nanoparticles. Contrary to the intrinsic photoluminescence of CaF2:Eu3+, a factor of 408 increase in the spontaneous emission rate and simultaneously an 800-fold enhancement in the emission intensity have been realized in nanocavities via comprehensive spectroscopic analysis. Additionally, the evolution law between the plasmon resonances and the luminescent enhancement as well as the emission spectrum of Eu3+ indicates a highly effective modulation of emission behavior by plasmons. This presents a novel strategy for enhancing the performance of optical micro- and nanodevices based on rare-earth ion materials, demonstrating significant potential in applications such as bioimaging and surface detection analysis.
Collapse
Affiliation(s)
- Xiao-Feng Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Jingyu Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Yu-Ting Wu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yadong Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Qiang-Qiang Zhu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - An Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yan Shi
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Li Y, Yang X, Ren K, Liu Y, Xu Z, Feng H, Deng K, Deng B, Shang W, Dong J, Wang F, Li Q, Yang X. Flexible X-ray Imaging and Stable Information Storage of SrF 2:Eu Based on Radio-Photoluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58827-58837. [PMID: 39405077 DOI: 10.1021/acsami.4c11478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
X-ray imaging has garnered widespread interest in biomedical diagnosis and nondestructive detection. The exploration of radio-photoluminescence has hastened the advancement of X-ray information storage. However, significant challenges persist in achieving the prolonged imaging of curved objects without attenuation. Here, europium-doped strontium fluoride (SrF2:Eu) is meticulously created to exhibit a linear response to an extensive range of X-ray doses (maximum dose > 5000 Gy), showcasing excellent X-ray information reading/erasing reusability properties (10 cycles). This is accompanied by a red-to-blue emission transition under UV excitation, sustaining for 150 days without attenuation. To elucidate the phenomena of irradiated photoluminescent discoloration and the reversible X-ray storage of SrF2:Eu, we propose an electron-vacancy trap (valence conversion) mechanism, information stably retained by the SrF2:Eu-based device under ambient conditions due to high energy barriers. The time-lapse readout capability is further demonstrated for three-dimensional imaging of curved objects (10 lp mm-1) based on SrF2:Eu embedded within a polydimethylsiloxane (SrF2:Eu@PDMS). The SrF2:Eu demonstrates time-lapse imaging, reversible radio-photoluminescence, and recoverable X-ray storage, offering a promising avenue for optical information encryption and anticounterfeiting applications.
Collapse
Affiliation(s)
- Yucheng Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xuechun Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kuan Ren
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Yulin Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411100, PR China
| | - Zhan Xu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - He Feng
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Keli Deng
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Bo Deng
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Wanli Shang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Jianjun Dong
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Feng Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Qianli Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
3
|
Zhao Q, Tian X, Ren L, Su Y, Su Q. Understanding of Lanthanide-Doped Core-Shell Structure at the Nanoscale Level. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1063. [PMID: 38921939 PMCID: PMC11206442 DOI: 10.3390/nano14121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The groundbreaking development of lanthanide-doped core-shell nanostructures have successfully achieved precise optical tuning of rare-earth nanocrystals, leading to significant improvements in energy transfer efficiency and facilitating multifunctional integration. Exploring the atomic-level structural, physical, and optical properties of rare-earth core-shell nanocrystals is essential for advancing our understanding of their fundamental principles and driving the development of emerging applications. However, our knowledge of the atomic-level structural details of rare-earth nanocrystal core-shell structures remains limited. This review provides a comprehensive discussion of synthesis strategies, characterization techniques, interfacial ion-mixing phenomena, strain effects, and spectral modulation in core-shell structures of rare-earth-doped nanocrystals. Additionally, we prospectively discuss the challenges encountered in studying the fine structures of rare-earth-doped core-shell nanocrystals, particularly the increasing demand for researchers to integrate interdisciplinary knowledge and utilize high-end precision instruments.
Collapse
Affiliation(s)
- Qing Zhao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xinle Tian
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Langtao Ren
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, Singapore 138672, Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
You W, Zhang C, Yu R, Zhang X, Li J, Li M, Xu Z, Fan P, Pan G, Mao Y. Excitation power-dependent multicolor upconversion in NaLnF 4:Er 3+ under 1532 nm irradiation for anti-counterfeiting application. OPTICS LETTERS 2024; 49:2978-2981. [PMID: 38824307 DOI: 10.1364/ol.525417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Upconversion (UC) materials are renowned for their ability to convert low-energy photons into high-energy ones. The manipulation of parameters allows for the observation of multicolored UC luminescence (UCL) within a single material system. While modulation of multicolored UCL commonly relies on excitation at approximately 980 nm, investigation into multicolored UC materials activated by a 1532 nm excitation source remains comparatively scarce. In this work, we introduce NaLnF4:Er3+ as a novel class of smart luminescent materials. When the power density of a 1532 nm laser increases from 0.5 to 20.0 W/cm2, the emission peak positions remain unchanged, but the red-to-green (R/G) ratio decreases significantly from 18.82 to 1.48, inducing a color shift from red to yellow and ultimately to green. In contrast, no color variation is observed when NaLnF4:Er3+ is excited with a 980 nm laser at different power densities. This power-dependent multicolored UCL of NaLnF4:Er3+ excited at 1532 nm can be attributed to the competitive processes of upward pumping and downward relaxation of electrons on the 4I9/2 level of Er3+. By utilizing the unique UC characteristics of NaLnF4:Er3+, its potential utility in anti-counterfeiting applications is demonstrated. Our research highlights the distinctive optical properties of NaLnF4:Er3+ and provides novel insights into the use of luminescent materials in optical anti-counterfeiting technologies.
Collapse
|
5
|
Yan L, Tao L, Zhang Q, Huang H, Zhang Q, Zhou B. Amplifying Photon Upconversion in Alloyed Nanoparticles for a Near-Infrared Photodetector. NANO LETTERS 2024; 24:4580-4587. [PMID: 38573804 DOI: 10.1021/acs.nanolett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photon upconverison has attracted a substantial amount of interest in diverse fields due to its characteristic anti-Stokes emissions. However, obtaining intense emission under low-power laser irradiation has remained a challenge. Here we report a mechanistic design of activator-sensitizer alloyed nanoparticles to achieve bright upconversion under weak infrared irradiation. This design allows a nearest sensitizer-activator separation to facilitate efficient energy transfer that results in remarkably enhanced upconversion (>2 orders of magnitude) under 0.26 W cm-2 irradiation compared to that of the Er sublattice, and the upconversion quantum yield also shows a 20-fold increase. Interestingly, the alloyed nanoparticles exhibit a gradual change in emission color with an increase in Yb3+ content, and moreover, their emission colors can be dynamically controlled by simply modulating the excitation laser power and pulse widths. Such alloyed nanoparticles show great promise for application in a near-infrared photodetector.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qizheng Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Haozhang Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
6
|
Liu X, Su X, Ren Z, Yang L, Zhang X, Ding M. Er 3+/Tm 3+ co-activated core@shell nanoarchitectures: tunable upconversion luminescence and high-security anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123519. [PMID: 37871526 DOI: 10.1016/j.saa.2023.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Currently, developing advanced optoelectronic materials is of great importance to solving serious problem of fake and shoddy products. Lanthanide-doped nanomaterials are particularly suitable for addressing this issue, but limited by the realization of multiple upconverison (UC) emissions upon a single-wavelength laser excitation. Herein, it is proven that the co-dopant of blue/near-infrared (NIR)-emitting activators (Tm3+) and green/red-emitting centers (Er3+) in a particular designed core-shell nanoarchitecture allows the achievement of multiple luminescence over wide spectral region for optical security. In our study, cubic-phased NaYbF4:Tm/Er@CaF2 nanocrystals have been successfully synthesized through a layer-by-layer coprecipitation strategy, which presents visible multicolor UC luminescence and invisible NIR UC emission upon 980 nm laser excitation by just regulating the laser power and temperature. Significantly, the unique luminescent characteristics enables the designed UC nanoparticles a promising candidate for advanced anti-counterfeiting. This works offers a reference to develop advanced optoelectronic materials for practical application in optical security.
Collapse
Affiliation(s)
- Xuan Liu
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xiaojia Su
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhuohang Ren
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lingqiu Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyue Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mingye Ding
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
7
|
Qi T, Lei L. Enhanced upconversion of sub20 nm core/shell/shell nanophosphors for temperature and rhodamine B sensing. CERAMICS INTERNATIONAL 2023; 49:28607-28614. [DOI: 10.1016/j.ceramint.2023.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Bai Y, Wang R, Li Y, Li Y. Luminescence Temperature Sensing and First Principles Calculation of Photoelectric Properties in C12A7 Co-Doped Eu 3+ Ions. ACS OMEGA 2023; 8:15730-15740. [PMID: 37151543 PMCID: PMC10157859 DOI: 10.1021/acsomega.3c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Developing high-resolution, high-accuracy fluorescent thermometers is challenging. In this study, the optical properties and thermal sensing of Yb-, Tm-, and Eu-co-doped C12A7 (C12A7:Yb/Eu/Tm), with flower-like structure upconversion microparticles, were studied. Eu3+ doping induced an approximately 6-fold change in the upconversion luminescence (UCL) output in comparison with C12A7:Yb/Tm microparticles. The maximum relative temperature sensitivity (S) of C12A7:Yb/Eu/Tm reached 3.0% K-1, representing an approximately 5-fold difference compared with the value of C12A7:Yb/Tm. In particular, the multicolor upconversion emission of C12A7:Yb/Eu/Tm can easily change from blue to white UCL with increasing temperature. Moreover, the band structure, total density, and optical coefficient of C12A7:Yb/Eu/Tm were investigated via density functional theory. The total density of O atoms increased in comparison with the total density of pure C12A7, indicating that substitution of Ca2+ by Yb/Eu/Tm produced positive vacancies on the cage structure. The optical coefficient of C12A7 was improved by the Yb/Eu/Tm dopant. The thermally regulated multicolor characteristics and thermally coupled energy levels of Tm3+ provide "dual adjustment temperature sensing", which is a promising strategy for realizing accurate and effective temperature sensors.
Collapse
Affiliation(s)
- Yandong Bai
- Tianjin
Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Rui Wang
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yongmei Li
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No.6 Huanrui
North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| | - Yuemei Li
- Xiamen
Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital
of Xiamen University, School of Medicine, Xiamen University, Xiamen 361012, China
| |
Collapse
|
9
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat Commun 2022; 13:5739. [PMID: 36180442 PMCID: PMC9525643 DOI: 10.1038/s41467-022-33489-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
External manipulation of emission colour is of significance for scientific research and applications, however, the general stimulus-responsive colour modulation method requires both stringent control of microstructures and continously adjustment of particular stimuli conditions. Here, we introduce pathways to manipulate the kinetics of time evolution of both intensity and spectral characteristics of X-ray excited afterglow (XEA) by regioselective doping of lanthanide activators in core-shell nanostructures. Our work reported here reveals the following phenomena: 1. The XEA intensities of multiple lanthanide activators are significantly enhanced via incorporating interstitial Na+ ions inside the nanocrystal structure. 2. The XEA intensities of activators exhibit diverse decay rates in the core and the shell and can largely be tuned separately, which enables us to realize a series of core@shell NPs featuring distinct time-dependent afterglow colour evolution. 3. A core/multi-shell NP structure can be designed to simultaneously generate afterglow, upconversion and downshifting to realize multimode time-dependent multicolour evolutions. These findings can promote the development of superior XEA and plentiful spectral manipulation, opening up a broad range of applications ranging from multiplexed biosensing, to high-capacity information encryption, to multidimensional displays and to multifunctional optoelectronic devices. X-ray activated afterglow nanomaterials are desirable components for advanced optoelectronic applications. Here, the authors present pathways to modulate the stimulus-responsive color emissions in lanthanide-doped fluoride core-shell nanoparticles.
Collapse
|
11
|
Liu E, Lei L, Ye R, Deng D, Xu S. Improved relative temperature sensitivity of over 10% K -1 in fluoride nanocrystals via engineering the interfacial layer. Chem Commun (Camb) 2022; 58:9076-9079. [PMID: 35876695 DOI: 10.1039/d2cc02548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time in situ temperature sensing is of significance in the bio-medical field; however, the low relative temperature sensitivity Sr is one of the major obstacles in the development of nanothermometers. Herein, we provide an effective route that engineers the interfacial layer in a core/shell/shell nanostructure to enlarge the temperature-dependent luminescence intensity ratio (LIR) variations followed by an improved Sr. The CaF2 interlayer is employed to inhibit the interaction between the core and outer shell, and increase the interfacial phonon energy to enhance the negative thermal quenching effect (TQE) of Nd3+ ions in the outer shell and positive TQE of Er3+ ions in the core layer. Based on the temperature-dependent LIR variations of Er (650 nm) to Nd (800 nm), the maximum Sr of 10.01% K-1 and minimum Sr of % 2.56% K-1 are achieved.
Collapse
Affiliation(s)
- Enyang Liu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Lei Lei
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China. .,Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Renguang Ye
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Degang Deng
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
12
|
Ding M, Cui S, Fang L, Lin Z, Lu C, Yang X. NIR-I-Responsive Single-Band Upconversion Emission through Energy Migration in Core-Shell-Shell Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202203631. [PMID: 35416381 DOI: 10.1002/anie.202203631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 01/04/2023]
Abstract
Here we report a new strategy to tune both excitation and emission peaks of upconversion nanoparticles (UCNPs) into the first infrared biowindow (NIR-I, 650-900 nm) with high NIR-I-to-NIR-I upconversion efficiency. By introducing the sensitizer Nd3+ , activator Er3+ , energy migrator Yb3+ and energy manipulator Mn2+ into specific region to construct proposed energy migration processes in the designed core-shell-shell nanoarchitecture, back energy transfer (BET) from activator to sensitizer or migrator can be greatly blocked and the NIR-to-red upconversion emission can be efficiently promoted. Consequently, BET-induced photon quenching and the undesired green-emitting radiative transition are entirely eliminated, leading to high-efficiency single-band red upconversion emission upon 808 nm NIR-I laser excitation. Our findings provide insights into fundamental lanthanide interactions and advance the development of UCNPs for bioapplications with techniques that overturn traditional limitations.
Collapse
Affiliation(s)
- Mingye Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Songsong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zixia Lin
- Testing center, Yangzhou University, Yangzhou, 225009, China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Ding M, Cui S, Fang L, Lin Z, Lu C, Yang X. NIR‐I‐Responsive Single‐Band Upconversion Emission through Energy Migration in Core‐Shell‐Shell Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingye Ding
- Nanjing Forestry University College of Science CHINA
| | - Songsong Cui
- Nanjing Forestry University College of Science 159 Longpan Road, Nanjing Forestry University 210037 Nanjing CHINA
| | - Liang Fang
- Nanjing Tech University College of Materials Science and Engineering CHINA
| | - Zixia Lin
- Yangzhou University Testing Center CHINA
| | - Chunhua Lu
- Nanjing Tech University College of Materials Science and Engineering CHINA
| | - Xiaofei Yang
- Nanjing Forestry University School of Science 159 Longpan Road 210037 Nanjing CHINA
| |
Collapse
|