1
|
Ma R, Tepliakov NV, Mostofi AA, Pizzochero M. Electrically Tunable Ultraflat Bands and π-Electron Magnetism in Graphene Nanoribbons. J Phys Chem Lett 2025; 16:1680-1685. [PMID: 39919168 PMCID: PMC11849038 DOI: 10.1021/acs.jpclett.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/09/2025]
Abstract
Atomically thin crystals hosting flat electronic bands have recently been identified as a rich playground for exploring and engineering strongly correlated phases. Yet, their variety remains limited, primarily to two-dimensional moiré superlattices. Here, we predict the formation of reversible, electrically induced ultraflat bands and π-electron magnetism in one-dimensional chevron graphene nanoribbons. Our ab initio calculations show that the application of a transverse electric field to these nanoribbons generates a pair of isolated, nearly perfectly flat bands with widths of approximately 1 meV around the Fermi level. Upon charge doping, these flat bands undergo a Stoner-like electronic instability, resulting in the spontaneous emergence of local magnetic moments at the edges of the otherwise nonmagnetic nanoribbon, akin to a one-dimensional spin-1/2 chain. Our findings expand the class of carbon-based nanostructures exhibiting flat bands and establish a novel route for inducing correlated electronic phases in chevron graphene nanoribbons.
Collapse
Affiliation(s)
- Ruize Ma
- Department
of Physics, ETH Zürich, Zurich 8093, Switzerland
- Departments
of Materials and Physics, Imperial College
London, London SW7 2AZ, United
Kingdom
- The
Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nikita V. Tepliakov
- Departments
of Materials and Physics, Imperial College
London, London SW7 2AZ, United
Kingdom
- The
Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arash A. Mostofi
- Departments
of Materials and Physics, Imperial College
London, London SW7 2AZ, United
Kingdom
- The
Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Pizzochero
- Department
of Physics, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Wu X, Sun M, Yu H, Xing Z, Kou J, Liang S, Wang ZL, Huang B. Constructing the Dirac Electronic Behavior Database of Under-Stress Transition Metal Dichalcogenides for Broad Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416082. [PMID: 39763119 DOI: 10.1002/adma.202416082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Discovering and utilizing the unique optoelectronic properties of transition metal dichalcogenides (TMDCs) is of great significance for developing next-generation electronic devices. In particular, research on Dirac state modulations of TMDCs under external strains is lacking. To fill this research gap, it has established a comprehensive database of 90 types of TMDCs and their response behaviors under external strains have been systematically investigated regarding the presence of Dirac cones and electronic structure evolutions. Among all the conditions, 27.3% of the TMDCs are Dirac materials with three distinct types of Dirac cones, which are mainly attributed to the electron localizations induced by external strains. TMDCs based on tellurides with 1H phase favor the formation of Dirac cones under stresses, leading to metallic-like properties and ultra-fast charge transportation. Correlations among Dirac cones, energy, electronic properties, and lattice structures have been revealed, offering critical references for modulating the properties of well-known TMDCs. More importantly, it has confirmed that the phase transition points are not sufficient for the appearance of Dirac cones. This work provides critical guidance to facilitate the development of TMDCs-based superconducting and optoelectronic devices for broad applications.
Collapse
Affiliation(s)
- Xiao Wu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzi Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Haitao Yu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Xing
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Kou
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shipeng Liang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Georgia, Georgia, 30332, USA
| | - Bolong Huang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
3
|
T Kuo DM. Topological states in finite graphene nanoribbons tuned by electric fields. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:085304. [PMID: 39642467 DOI: 10.1088/1361-648x/ad9b62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
In this comprehensive study, we conduct a theoretical investigation into the Stark shift of topological states (TSs) in finite armchair graphene nanoribbons (AGNRs) and heterostructures under transverse electric fields. Our focus centers on the multiple end zigzag edge states of AGNRs and the interface states of9--7--9AGNR heterostructures. For the formal TSs, we observe a distinctive blue Stark shift in energy levels relative to the electric field within a range where the energy levels of TSs do not merge into the energy levels of bulk states. Conversely, for the latter TSs, we identify an oscillatory Stark shift in energy levels around the Fermi level. Simultaneously, we reveal the impact of the Stark effect on the transmission coefficients for both types of TSs. Notably, we uncover intriguing spectra in the multiple end zigzag edge states. In the case of finite9--7--9AGNR heterostructures, the spectra of transmission coefficient reveal that the coupling strength between the topological interface states can be well controlled by the transverse electric fields. The outcomes of this research not only contribute to a deeper understanding of the electronic property in graphene-based materials but also pave the way for innovations in next-generation electronic devices and quantum technologies.
Collapse
Affiliation(s)
- David M T Kuo
- Department of Electrical Engineering and Department of Physics, National Central University, Chungli 32001, Taiwan
| |
Collapse
|
4
|
Kuo DMT. Charge transport through the multiple end zigzag edge states of armchair graphene nanoribbons and heterojunctions. RSC Adv 2024; 14:20113-20119. [PMID: 38915325 PMCID: PMC11194785 DOI: 10.1039/d4ra02574a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
This comprehensive study investigates charge transport through the multiple end zigzag edge states of finite-size armchair graphene nanoribbons/boron nitride nanoribbons (n-AGNR/w-BNNR) junctions under a longitudinal electric field, where n and w denote the widths of the AGNRs and the BNNRs, respectively. In 13-atom wide AGNR segments, the edge states exhibit a blue Stark shift in response to the electric field, with only the long decay length zigzag edge states showing significant interaction with the red Stark shift subband states. Charge tunneling through such edge states assisted by the subband states is elucidated in the spectra of the transmission coefficient. In the 13-AGNR/6-BNNR heterojunction, notable influences on the energy levels of the end zigzag edge states of 13-AGNRs induced by BNNR segments are observed. We demonstrate the modulation of these energy levels in resonant tunneling situations, as depicted by bias-dependent transmission coefficient spectra. Intriguing nonthermal broadening of tunneling current shows a significant peak-to-valley ratio. Our findings highlight the promising potential of n-AGNR/w-BNNR heterojunctions with long decay length edge states in the realm of GNR-based single electron transistors at room temperature.
Collapse
Affiliation(s)
- David M T Kuo
- Department of Electrical Engineering, Department of Physics, National Central University Chungli 32001 Taiwan
| |
Collapse
|
5
|
Pizzochero M, Tepliakov NV, Lischner J, Mostofi AA, Kaxiras E. One-Dimensional Magnetic Conduction Channels across Zigzag Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions. NANO LETTERS 2024; 24:6521-6528. [PMID: 38788172 DOI: 10.1021/acs.nanolett.4c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
We examine the electronic structure of recently fabricated in-plane heterojunctions of zigzag graphene nanoribbons embedded in hexagonal boron nitride. We focus on hitherto unexplored interface configurations in which both edges of the nanoribbon are bonded to the same chemical species, either boron or nitrogen atoms. Using ab initio and mean-field Hubbard model calculations, we reveal the emergence of one-dimensional magnetic conducting channels at these interfaces. These channels originate from the energy shift of the magnetic interface states that is induced by charge transfer between the nanoribbon and hexagonal boron nitride. We further address the response of these heterojunctions to external electric and magnetic fields, demonstrating the tunability of energy and spin splittings in the electronic structure. Our findings establish that zigzag graphene nanoribbon/hexagonal boron nitride heterojunctions are a suitable platform for exploring and engineering spin transport in the atomically thin limit, with potential applications in integrated spintronic devices.
Collapse
Affiliation(s)
- Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Johannes Lischner
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Tepliakov NV, Ma R, Lischner J, Kaxiras E, Mostofi AA, Pizzochero M. Dirac Half-Semimetallicity and Antiferromagnetism in Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions. NANO LETTERS 2023; 23:6698-6704. [PMID: 37459271 DOI: 10.1021/acs.nanolett.3c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Half-metals have been envisioned as active components in spintronic devices by virtue of their completely spin-polarized electrical currents. Actual materials hosting half-metallic phases, however, remain scarce. Here, we predict that recently fabricated heterojunctions of zigzag nanoribbons embedded in two-dimensional hexagonal boron nitride are half-semimetallic, featuring fully spin-polarized Dirac points at the Fermi level. The half-semimetallicity originates from the transfer of charges from hexagonal boron nitride to the embedded graphene nanoribbon. These charges give rise to opposite energy shifts of the states residing at the two edges, while preserving their intrinsic antiferromagnetic exchange coupling. Upon doping, an antiferromagnetic-to-ferrimagnetic phase transition occurs in these heterojunctions, with the sign of the excess charge controlling the spatial localization of the net magnetic moments. Our findings demonstrate that such heterojunctions realize tunable one-dimensional conducting channels of spin-polarized Dirac fermions seamlessly integrated into a two-dimensional insulator, thus holding promise for the development of carbon-based spintronics.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ruize Ma
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Physics, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Johannes Lischner
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Kuo DMT. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111757. [PMID: 37299660 DOI: 10.3390/nano13111757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
In this study, we investigate the charge transport properties of semiconducting armchair graphene nanoribbons (AGNRs) and heterostructures through their topological states (TSs), with a specific focus on the Coulomb blockade region. Our approach employs a two-site Hubbard model that takes into account both intra- and inter-site Coulomb interactions. Using this model, we calculate the electron thermoelectric coefficients and tunneling currents of serially coupled TSs (SCTSs). In the linear response regime, we analyze the electrical conductance (Ge), Seebeck coefficient (S), and electron thermal conductance (κe) of finite AGNRs. Our results reveal that at low temperatures, the Seebeck coefficient is more sensitive to many-body spectra than electrical conductance. Furthermore, we observe that the optimized S at high temperatures is less sensitive to electron Coulomb interactions than Ge and κe. In the nonlinear response regime, we observe a tunneling current with negative differential conductance through the SCTSs of finite AGNRs. This current is generated by electron inter-site Coulomb interactions rather than intra-site Coulomb interactions. Additionally, we observe current rectification behavior in asymmetrical junction systems of SCTSs of AGNRs. Notably, we also uncover the remarkable current rectification behavior of SCTSs of 9-7-9 AGNR heterostructure in the Pauli spin blockade configuration. Overall, our study provides valuable insights into the charge transport properties of TSs in finite AGNRs and heterostructures. We emphasize the importance of considering electron-electron interactions in understanding the behavior of these materials.
Collapse
Affiliation(s)
- David M T Kuo
- Department of Electrical Engineering, National Central University, Chungli 320, Taiwan, China
- Department of Physics, National Central University, Chungli 320, Taiwan, China
| |
Collapse
|
8
|
Razzhivina ME, Rukhlenko ID, Tepliakov NV. Chiral Optical Properties of Möbius Graphene Nanostrips. J Phys Chem Lett 2023; 14:4426-4432. [PMID: 37141489 DOI: 10.1021/acs.jpclett.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The advancement of optical technology demands the development of chiral nanostructures with a strong dissymmetry of optical response. Here, we comprehensively analyze the chiral optical properties of circular twisted graphene nanostrips, with a particular emphasis on the case of a Möbius graphene nanostrip. We use the method of coordinate transformation to analytically model the electronic structure and optical spectra of the nanostrips, while employing the cyclic boundary conditions to account for their topology. It is found that the dissymmetry factors of twisted graphene nanostrips can reach 0.01, exceeding the typical dissymmetry factors of small chiral molecules by 1-2 orders of magnitude. The results of this work thus demonstrate that twisted graphene nanostrips of Möbius and similar geometries are highly promising nanostructures for chiral optical applications.
Collapse
Affiliation(s)
- Marina E Razzhivina
- Information Optical Technologies Center, ITMO University, Saint Petersburg 197101, Russia
| | - Ivan D Rukhlenko
- Information Optical Technologies Center, ITMO University, Saint Petersburg 197101, Russia
- School of Physics, Institute of Photonics and Optical Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nikita V Tepliakov
- Department of Materials and The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Tepliakov NV, Lischner J, Kaxiras E, Mostofi AA, Pizzochero M. Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons. PHYSICAL REVIEW LETTERS 2023; 130:026401. [PMID: 36706398 DOI: 10.1103/physrevlett.130.026401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Armchair graphene nanoribbons are a highly promising class of semiconductors for all-carbon nanocircuitry. Here, we present a new perspective on their electronic structure from simple model Hamiltonians and ab initio calculations. We focus on a specific set of nanoribbons of width n=3p+2, where n is the number of carbon atoms across the nanoribbon axis and p is a positive integer. We demonstrate that the energy-gap opening in these nanoribbons originates from the breaking of a previously unidentified hidden symmetry by long-ranged hopping of π electrons and structural distortions occurring at the edges. This hidden symmetry can be restored or manipulated through the application of in-plane lattice strain, which enables continuous energy-gap tuning, the emergence of Dirac points at the Fermi level, and topological quantum phase transitions. Our work establishes an original interpretation of the semiconducting character of armchair graphene nanoribbons and offers guidelines for rationally designing their electronic structure.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Johannes Lischner
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
10
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|