1
|
Mathew N, Rathod R, Saha S, Santra PK, Pati SK, Eswaramoorthy M. Engineering Ni(OH) 2 with Pd for Efficient Electrochemical Urea Oxidation. Chem Asian J 2025; 20:e202401188. [PMID: 40048285 DOI: 10.1002/asia.202401188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Urea-assisted water electrolysis is a promising and energy-efficient alternative to electrochemical water splitting due to its low thermodynamic potential of 0.37 V, which is 860 mV less than that needed for water splitting (1.23 V). Ni(OH)2 has proven to be an efficient catalyst for this reaction. However, the non-spontaneous desorption of CO2 molecules from the catalyst surface leads to active site poisoning, which significantly impacts its long-term stability. Herein, we have demonstrated that Pd incorporated NiOH2 (Pd/Ni(OH)2) results in a significant decrease in the overpotential by 40 mV at 10 mA cm-2 as compared to Ni(OH)2. The decrease in the Tafel slope and charge transfer resistance of Pd/Ni(OH)2 indicates an improvement in the kinetics of the reaction, resulting in a maximum current density of 380 mA cm-2 at 1.5 V, which is higher than that observed for Ni(OH)2 (180 mA cm-2). XAS analysis was utilized to determine the nature of the metal species in the catalyst. It revealed that while Pd predominantly exists in its metallic state within the bulk of the catalyst, the surface is enriched with the oxide phase. The presence of Pd prevents the strong adsorption of CO2 at the active site in Pd/Ni(OH)2, resulting in a substantial improvement of stability of up to 300 h as compared to Ni(OH)2. DFT calculations were performed to explore the detailed reaction mechanism of urea oxidation on Ni(OH)2 and Pd/Ni(OH)2. These calculations provided further insight into the experimental observations and evaluated the contribution of Pd in enhancing the catalytic efficiency of Ni(OH)2. Additionally, the operando Raman and IR spectroscopy were used to understand the formation of the active sites and the intermediates during urea electrooxidation.
Collapse
Affiliation(s)
- Nijita Mathew
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Radha Rathod
- Centre for Nano and Soft Matter Sciences, Bengaluru, Karnataka, 562162, India
| | - Sougata Saha
- Theoretical Sciences Unit, JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Pralay K Santra
- Centre for Nano and Soft Matter Sciences, Bengaluru, Karnataka, 562162, India
| | - Swapan K Pati
- Theoretical Sciences Unit, JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| |
Collapse
|
2
|
Kato Y, Kato M, Saito S, Zhuang Y, Iguchi Y, Sato J, Komanoya T, Soma K, Suzuki K, Yagi I. Co-presence of PtNi nanowires and ionic liquid in carbon mesopores enhances electrocatalytic oxygen reduction activity. NANOSCALE 2024; 16:20505-20509. [PMID: 39434623 DOI: 10.1039/d4nr03286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The electrocatalytic activity of PtNi nanowires is enhanced by the co-presence of ionic liquid in carbon mesopores. Three-dimensional transmission electron microscopy tomography and surface-enhanced infrared absorption spectroscopy confirm the co-presence of PtNi nanowires and ionic liquid inside carbon mesopores even under electrochemical conditions.
Collapse
Affiliation(s)
- Yuta Kato
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Masaru Kato
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan.
| | - Shun Saito
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Yu Zhuang
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Yoshimi Iguchi
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Jun Sato
- R&D Center, Business Creation Sector, Mitsui Mining and Smelting Co., Ltd, 1333-2, Haraichi, Ageo 362-0021, Japan
| | - Tasuku Komanoya
- R&D Center, Business Creation Sector, Mitsui Mining and Smelting Co., Ltd, 1333-2, Haraichi, Ageo 362-0021, Japan
| | - Kentaro Soma
- Materials Analysis & Exploration Center, Mitsui Mining and Smelting Co., Ltd, 1333-2, Haraichi, Ageo 362-0021, Japan
| | - Koshiro Suzuki
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Ichizo Yagi
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
3
|
Yang D, Huang R, Zou B, Wang R, Wang Y, Ang EH, Song X. Unraveling nanosprings: morphology control and mechanical characterization. MATERIALS HORIZONS 2024; 11:3500-3527. [PMID: 38864466 DOI: 10.1039/d4mh00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanosprings demonstrate promising mechanical characteristics, positioning them as pivotal components in a diverse array of potential nanoengineering applications. To unlock the full potential of these nanosprings, ongoing research is concentrated on emulating springs at the nanoscale in terms of both morphology and function. This review underscores recent advancements in the field and provides a comprehensive overview of the diverse methods employed for nanospring preparation. Understanding the general mechanism behind nanospring formation lays the groundwork for the informed design of nanosprings. The synthesis section delineates four prominent methods employed for nanospring fabrication: vapor phase synthesis, templating methods, post-treatment techniques, and molecular engineering. Each method is critically analyzed, highlighting its strengths, limitations, and potential for scalability. Mechanical properties of nanosprings are explored in depth, discussing their response to external stimuli and their potential applications in various fields such as sensing, energy storage, and biomedical engineering. The interplay between nanospring morphology and mechanical behavior is elucidated, providing insights into the design principles for tailored functionality. Additionally, we anticipate that the evolution of state-of-the-art characterization tools, such as in situ transmission electron microscopy, 3D electron tomography, and machine learning, will significantly contribute to both the study of nanospring mechanisms and their applications.
Collapse
Affiliation(s)
- Dahai Yang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Bolin Zou
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Ruoxu Wang
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yong Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| |
Collapse
|
4
|
Chen W, Wu J, Li Z, Chen Y, Ao H, Zheng X, Zhang Y, Rong J, Qiu F. High-Density CoSe 2 Sites Embedded within 2D Porous N-Doped Carbon for High-Performance Oxygen Reduction Reaction Electrocatalysis. Inorg Chem 2024; 63:4429-4437. [PMID: 38377564 DOI: 10.1021/acs.inorgchem.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.
Collapse
Affiliation(s)
- Wangyi Chen
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jing Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Yu Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Huaisheng Ao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Sun C, Tan Y, Wen Y, Yang Y, Guo F, Huang H, Ma W, Cheng S. In situ growth engineering of ultrathin dendritic PdNi nanosheets on nitrogen-doped V 2CT x MXenes for efficient hydrogen evolution. NANOSCALE 2024; 16:4014-4024. [PMID: 38349080 DOI: 10.1039/d3nr06502b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immobilizing metal nanoparticles on a support is crucial for catalysts' stability and spatial distribution. MXenes are promising substrates for in situ growth engineering of various electrocatalysts owing to their merits. A stronger binding capacity can be achieved between the in situ-fabricated catalysts and MXenes compared to a common physical combination. Thus, synergistically utilizing morphology modulation, composition optimization, and the interfacial interaction between metal catalysts and supports will maximize the electrocatalytic activity. However, most reported in situ-formed catalysts on MXenes result in solid 0D nanoparticles and in situ growth of nanoalloy catalysts on MXenes with a precisely controlled morphology is still lacking. Herein, nanodendritic PdNi alloys are in situ grown on nitrogen-doped V2CTx, serving as efficient electrocatalysts toward the hydrogen evolution reaction (HER). Thanks to the synergistic effect of the unique nanodendritic structure of PdNi, the merits of N-TBA-V2CTx nanosheets, and the strong metal-support interaction between the PdNi and the N-TBA-V2CTx support, the in situ-formed Pd58Ni42/N-TBA-V2CTx electrocatalyst shows excellent HER performance with an ultralow overpotential of 44.1 mV to achieve 10 mA cm-2 and a lowest Tafel slope of 39.4 mV dec-1, which outperforms Pd58Ni42/TBA-V2CTx, Pd58Ni42, and Pd/C. Remarkably, the Pd58Ni42/N-TBA-V2CTx catalyst can maintain 92.3% of its initial activity even after 50 h of continuous operation.
Collapse
Affiliation(s)
- Chaohai Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Yong Tan
- Jiangsu Engineering Research Center for Cathode Materials for Power and Energy Storage Batteries, BTR New Material Group Co., Ltd, Shenzhen 518000, China
| | - Yong Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Fang Guo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Hongyan Huang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Wanli Ma
- Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| |
Collapse
|
6
|
Ning S, Li M, Wang X, Zhang D, Zhang B, Wang C, Sun D, Tang Y, Li H, Sun K, Fu G. Importing Antibonding-Orbital Occupancy through Pd-O-Gd Bridge Promotes Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202314565. [PMID: 37943183 DOI: 10.1002/anie.202314565] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The active-site density, intrinsic activity, and durability of Pd-based materials for oxygen reduction reaction (ORR) are critical to their application in industrial energy devices. This work constructs a series of carbon-based rare-earth (RE) oxides (Gd2 O3 , Sm2 O3 , Eu2 O3 , and CeO2 ) by using RE metal-organic frameworks to tune the ORR performance of the Pd sites through the Pd-REx Oy interface interaction. Taking Pd-Gd2 O3 /C as a representative, it is identified that the strong coupling between Pd and Gd2 O3 induces the formation of the Pd-O-Gd bridge, which triggers charge redistribution of Pd and Gd2 O3 . The screened Pd-Gd2 O3 /C exhibits impressive ORR performance with high onset potential (0.986 VRHE ), half-wave potential (0.877 VRHE ), and excellent stability. Similar ORR results are also found for Pd-Sm2 O3 /C, Pd-Eu2 O3 /C, and Pd-CeO2 /C catalysts. Theoretical analyses reveal that the coupling between Pd and Gd2 O3 promotes electron transfer through the Pd-O-Gd bridge, which induces the antibonding-orbital occupancy of Pd-*OH for the optimization of *OH adsorption in the rate-determining step of ORR. The pH-dependent microkinetic modeling shows that Pd-Gd2 O3 is close to the theoretical optimal activity for ORR, outperforming Pt under the same conditions. By its ascendancy in ORR, the Pd-Gd2 O3 /C exhibits superior performance in Zn-air battery as an air cathode, implying its excellent practicability.
Collapse
Affiliation(s)
- Shuwang Ning
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Baiyu Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Caikang Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Kang Sun
- Key Lab of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, No. 16 Suojin 5th Village, Nanjing, 210042, China
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, Xinjiang, 830011, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Wei DY, Xing GN, Chen HQ, Xie XQ, Huang HM, Dong JC, Tian JH, Zhang H, Li JF. Palladium atomic layers coated on ultrafine gold nanowires boost oxygen reduction reaction. J Colloid Interface Sci 2023; 650:1518-1524. [PMID: 37487282 DOI: 10.1016/j.jcis.2023.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only ∼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.
Collapse
Affiliation(s)
- Di-Ye Wei
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Guan-Nan Xing
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Heng-Quan Chen
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Qun Xie
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Hui-Mei Huang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Jin C, Fu R, Ran L, Wang W, Wang F, Zheng D, Feng Q, Wang G. Facile fabrication of hierarchical ultrathin Rh-based nanosheets for efficient hydrogen evolution. RSC Adv 2023; 13:13985-13990. [PMID: 37181516 PMCID: PMC10167732 DOI: 10.1039/d3ra00672g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023] Open
Abstract
Rational design of efficient and stable electrocatalysts for the hydrogen evolution reaction (HER) has attracted wide attention. Noble metal-based electrocatalysts with ultrathin structures and highly exposed active surfaces are essential to boost the HER performance, while the simple synthetic strategies remain challenging. Herein, we reported a facile urea-mediated method to synthesize hierarchical ultrathin Rh nanosheets (Rh NSs) without using toxic reducing agents and structure directing agents in the reaction. The hierarchical ultrathin nanosheet structure and grain boundary atoms endow Rh NSs with excellent HER activities, which only requires a lower overpotential of 39 mV in 0.5 M H2SO4 compared to the 80 mV of Rh nanoparticles (Rh NPs). Extending the synthesis method to alloys, hierarchical ultrathin RhNi nanosheets (RhNi NSs) can be also obtained. Benefiting from the optimization of electronic structure and abundant active surfaces, RhNi NSs only require an overpotential of 27 mV. This work provides a simple and promising method to construct ultrathin nanosheet electrocatalysts for highly active electrocatalytic performance.
Collapse
Affiliation(s)
- Changhui Jin
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Ruijing Fu
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Longqiao Ran
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Wenhui Wang
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Fuxin Wang
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Dezhou Zheng
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| | - Guangxia Wang
- School of Applied Physics and Materials, Wuyi University Jiangmen 529020 China
| |
Collapse
|
9
|
Yang F, Ren R, Zhang X, Waqas M, Peng X, Wang L, Liu X, Chen DH, Fan Y, Chen W. Tailoring the electronic structure of PdAg alloy nanowires for high oxygen reduction reaction. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Li S, Jin H, Wang Y. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. NANOSCALE 2023; 15:2488-2515. [PMID: 36722933 DOI: 10.1039/d2nr06090f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Benefiting from both one-dimensional (1D) morphology and alloy composition, metal alloy nanowires have been exploited as advanced electrocatalysts in various electrochemical processes. In this review, the synthesis approaches for metal alloy nanowires are classified into two categories: direct syntheses and syntheses based on preformed 1D nanostructures. Ligand systems that are of critical importance to the formation of alloy nanowires are summarized and reviewed, together with the strategies imposed to achieve the co-reduction of different metals. Meanwhile, different scenarios that form alloy nanowires from pre-synthesized 1D nanostructures are compared and contrasted. In addition, the characterization and electrocatalytic applications of metal alloy nanowires are briefly discussed.
Collapse
Affiliation(s)
- Shumin Li
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Hui Jin
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| |
Collapse
|
11
|
Zhou X, Bai D, Yu H, Fu Y, Song L, Wu Y, Chen K, Li J, Yang Y, Chen H, Wang Z, Xie G. Detection of rare CTCs by electrochemical biosensor built on quaternary PdPtCuRu nanospheres with mesoporous architectures. Talanta 2023; 253:123955. [PMID: 36179559 DOI: 10.1016/j.talanta.2022.123955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) are promising liquid biopsy biomarkers for early cancer detection and anti-cancer therapy evaluation. The ultra-low abundance of CTCs in blood samples requires highly sensitive and accurate detection ways. In this study, we propose the design of a dual-recognition electrochemical biosensor to improve both the specificity and signal response. PdPtCuRu mesoporous nanospheres (PdPtCuRu MNSs) with excellent three dimensions (3D) nanopore structures were synthesized by one-pot method and connected to mucin 1 (MUC1) aptamer to serve as signal amplification probe. Besides, superconductive carbon black, Ketjen Black (KB), and gold nanoparticles (AuNPs) modified organometallic frame (CeMOF-Au) were combined to work as signal transducer. The characteristic branching structure of KB provides abundant contact points to load CeMOF-Au to heighten the interface electron transfer rate. In addition, AuNPs were reduced on the surface of CeMOF, which could effectively bind the capture antibody and further enhance the conductivity. Under the optimized condition, the limit of detection (LOD) of the as-constructed biosensor was less than 10 cells mL-1 for model A549 cells, and showed good specificity and accuracy in spiked serum samples. We envision the as-proposed electrochemical biosensor would alternate as a useful tool for the clinical detection of CTCs for cancer diagnosis.
Collapse
Affiliation(s)
- Xi Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Dan Bai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Hongyan Yu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Yixin Fu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Lin Song
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - You Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Kena Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Huajian Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China; Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Zhongzhong Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Xing GN, Wei DY, Zhang H, Tian ZQ, Li JF. Pd-based Nanocatalysts for Oxygen Reduction Reaction: Preparation, Performance, and in-Situ Characterization. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Pham HQ, Huynh TT. One-pot production of a sea urchin-like alloy electrocatalyst for the oxygen electro-reduction reaction. Dalton Trans 2022; 51:11427-11436. [PMID: 35822501 DOI: 10.1039/d2dt01268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing a cost-effective catalyst with high performance towards the oxygen electro-oxidation reaction (ORR) is of great interest for the development of green energy storage and conversion technologies. We report herein a facile self-assembly strategy in a mild reducing environment to realize an urchin-like NiPt bimetallic alloy with the domination of the (111) facets as an efficient ORR electrocatalyst. In the rotating-disk electrode test, the as-obtained NiPt nanourchins (NUCs)/C catalyst demonstrates an increase in both onset potential (0.96 VRHE) and half-wave potential (0.92 VRHE) and a direct four-electron ORR pathway with enhanced reaction kinetics. Additionally, the as-made NiPt NUCs/C electrocatalyst also shows impressive ORR catalytic stability compared to a commercial Pt NPs/C catalyst after an accelerated durability test with 15.29% degradation in mass activity, which is 3.04-times lower than 46.48% of the Pt NPs/C catalyst. The great ORR performance of the as-made catalyst is due to its unique urchin-like morphology with the dominant (111) facets and the synergistic and electronic effects of alloying Ni and Pt. This study not only provides a robust ORR electrocatalyst, but also opens a facile but effective route for fabricating 3D Pt-based binary and ternary alloy catalysts.
Collapse
Affiliation(s)
- Hau Quoc Pham
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tai Thien Huynh
- Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|