1
|
Wang X, Xue S, Huang M, Lin W, Hou Y, Yu Z, Anpo M, Yu JC, Zhang J, Wang X. Pressure-Induced Engineering of Surface Oxygen Vacancies on Metal Oxides for Heterogeneous Photocatalysis. J Am Chem Soc 2025; 147:4945-4951. [PMID: 39876679 DOI: 10.1021/jacs.4c14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Oxygen vacancies (OVs) spatially confined on the surface of metal oxide semiconductors are advantageous for photocatalysis, in particular, for O2-involved redox reactions. However, the thermal annealing process used to generate surface OVs often results in undesired bulk OVs within the metal oxides. Herein, a high pressure-assisted thermal annealing strategy has been developed for selectively confining desirable amounts of OVs on the surface of metal oxides, such as tungsten oxide (WO3). Applying a pressure of 1.2 gigapascal (GPa) on WO3 induces significant lattice compression, which would strengthen the W-O bonds and increase the diffusion activation energy for the migration of the O migration. This pressure-induced compression effectively inhibits the formation of bulk OVs, resulting in a high density of surface-confined OVs on WO3. These well-defined surface OVs significantly enhance the photocatalytic activation of O2, facilitating H2O2 production and aerobic oxidative coupling of amines. This strategy holds promise for the defect engineering of other metal oxides, enabling abundant surface OVs for a range of emerged applications.
Collapse
Affiliation(s)
- Xiaoyi Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meirong Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Masakazu Anpo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
2
|
Koirala KP, Hossain MD, Wang L, Zhuo Z, Yang W, Bowden ME, Spurgeon SR, Wang C, Sushko PV, Du Y. Layer Resolved Cr Oxidation State Modulation in Epitaxial SrFe 0.67Cr 0.33O 3-δ Thin Films. NANO LETTERS 2024; 24:14244-14251. [PMID: 39481117 DOI: 10.1021/acs.nanolett.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Understanding how doping influences physicochemical properties of ABO3 perovskite oxides is critical for tailoring their functionalities. In this study, SrFe0.67Cr0.33O3-δ epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface. Electron energy loss spectroscopy shows Fe remains Fe3+, while Cr varies from ∼Cr3+ (tetrahedral layers) to ∼Cr4+ (octahedral layers) within brownmillerite phases and becomes ∼Cr4.5+ in perovskite-like phases. Theoretical simulations indicate that Cr-O bond arrangements and the way oxygen vacancies interact with Cr and Fe drive Cr charge disproportionation. High-valent Cr cations introduce additional densities of states near the Fermi level, reducing the optical bandgap from ∼2.0 eV (SrFeO2.5) to ∼1.7 eV (SrFe0.67Cr0.33O3-δ). These findings offer insights into B-site cation doping in the perovskite oxide framework.
Collapse
Affiliation(s)
- Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mohammad Delower Hossain
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Steven R Spurgeon
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Yoo SJ, Hwang J, Jang J, Jang JH, Park CH, Lee JH, Choi MY, Yuk JM, Choi SY, Lee J, Chung SY. Comparing the Impacts of Strain Types on Oxygen-Vacancy Formation in a Perovskite Oxide via Nanometer-Scale Strain Fields. ACS NANO 2024; 18:18465-18476. [PMID: 38888543 DOI: 10.1021/acsnano.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The utilization of an in-plane lattice misfit in an oxide epitaxially grown on another oxide with a different lattice parameter is a well-known approach to induce strains in oxide materials. However, achieving a sufficiently large misfit strain in this heteroepitaxial configuration is usually challenging, unless the thickness of the grown oxide is kept well below a critical value to prevent the formation of misfit dislocations at the interface for relaxation. Instead of adhering to this conventional approach, here, we employ nanometer-scale large strain fields built around misfit dislocations to examine the effects of two distinct types of strains─tension and compression─on the generation of oxygen vacancies in heteroepitaxial LaCoO3 films. Our atomic-level observations, coupled with local electron-beam irradiation, clarify that the in-plane compression notably suppresses the creation of oxygen vacancies, whereas the formation of vacancies is facilitated under tensile strain. Demonstrating that the defect generation can considerably vary with the type of strain, our study highlights that the experimental approach adopted in this work is applicable to other oxide systems when investigating the strain effects on vacancy formation.
Collapse
Affiliation(s)
- Seung Jo Yoo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Jaejin Hwang
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Jinhyuk Jang
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae Hyuck Jang
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Chang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji-Hyun Lee
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Min Yeong Choi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
4
|
Xiao M, Liu J, Li R, Sun Y, Liu F, Gan J, Gao S. Rapid Conversion from Alloy Nanoparticles to Oxide Nanowires: Strain Wave-Driven Ru-O-Mn Collaborative Catalysis for Durable Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400754. [PMID: 38385815 DOI: 10.1002/smll.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Metal-doped ruthenium oxides with low prices have gained widespread attention due to their editable compositions, distorted structures, and diverse morphologies for electrocatalysis. However, the mainstream challenge lies in breaking the so-called seesaw relationship between activity and stability during acidic oxygen evolution reaction (OER). Herein, strain wave-featured Mn-RuO2 nanowires (NWs) with asymmetric Ru-O-Mn bonds are first fabricated by thermally driven rapid solid phase conversion from RuMn alloy nanoparticles (NPs) at moderate temperature (450 °C). In 0.5 M H2SO4, the resultant NWs display a surprisingly ultralow overpotential of 168 mV at 10 mA cm-2 and run at a stable cell voltage (1.67 V) for 150 h at 50 mA cm-2 in PEMWE, far exceeding IrO2||Pt/C assemble. The simultaneous enhancement of both activity and stability stems from the presence of dense strain waves composed of alternating compressive and tensile ones in the distorted NWs, which collaboratively activate the Ru-O-Mn sites for faster OER. More importantly, the atomic strain waves trigger dynamic Ru-O-Mn regeneration via the refilling of oxygen vacancies by oxyanions adsorbed on adjacent Mn and Ru sites, achieving long-term stability. This work opens a door to designing non-precious metal-assisted ruthenium oxides with unique strains for practical application in commercial PEMWE.
Collapse
Affiliation(s)
- Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| |
Collapse
|
5
|
Choi S, Son J, MacManus-Driscoll JL, Lee S. Hydrogen-Driven Low-Temperature Topotactic Transition in Nanocomb Cobaltite for Ultralow Power Ionic-Magnetic Coupled Applications. NANO LETTERS 2024; 24:3606-3613. [PMID: 38483316 DOI: 10.1021/acs.nanolett.3c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
We reversibly control ferromagnetic-antiferromagnetic ordering in an insulating ground state by annealing tensile-strained LaCoO3 films in hydrogen. This ionic-magnetic coupling occurs due to the hydrogen-driven topotactic transition between perovskite LaCoO3 and brownmillerite La2Co2O5 at a lower temperature (125-200 °C) and within a shorter time (3-10 min) than the oxygen-driven effect (500 °C, tens of hours). The X-ray and optical spectroscopic analyses reveal that the transition results from hydrogen-driven filling of correlated electrons in the Co 3d-orbitals, which successively releases oxygen by destabilizing the CoO6 octahedra into CoO4 tetrahedra. The transition is accelerated by surface exchange, diffusion of hydrogen in and oxygen out through atomically ordered oxygen vacancy "nanocomb" stripes in the tensile-strained LaCoO3 films. Our ionic-magnetic coupling with fast operation, good reproducibility, and long-term stability is a proof-of-principle demonstration of high-performance ultralow power magnetic switching devices for sensors, energy, and artificial intelligence applications, which are keys for attaining carbon neutrality.
Collapse
Affiliation(s)
- Songhee Choi
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Jaeseok Son
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Shinbuhm Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
6
|
Zhang J, Ji Y, Liu H, Cheng N, Guo S, Yang M, Ren L, Ge B. Approaching Elaborate Control of the Nano-Products of Carbothermal Reduction Reaction Through In Situ Identification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206404. [PMID: 36610052 DOI: 10.1002/smll.202206404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Atomic understanding of a chemical reaction can realize the programmable design and synthesis of desired products with specific compositions and structures. Through directly monitoring the phase transition and tracking the dynamic evolution of atoms in a chemical reaction, in situ transmission electron microscopy (TEM) techniques offer the feasibility of revealing the reaction kinetics at the atomic level. Nevertheless, such investigation is quite challenging, especially for reactions involving multi-phase and complex interfaces, such as the widely adopted carbothermal reduction (CTR) reactions. Herein, in-situ TEM is applied to monitor the CTR of Co3 O4 nanocubes on reduced graphene oxide nanosheets. Together with the first-principle calculation, the migration route of Co atoms during the phase transition of the CTR reaction is revealed. Meanwhile, the interfacial edge-dislocations/stress-gradient is identified as a result of the atomistic diffusion, which in turn can affect the morphology variation of the reactants. Accordingly, controllable synthesis of Co-based nanostructure with a desirable phase and structure has been achieved. This work not only provides atomic kinetic insight into CTR reactions but also offers a novel strategy for the design and synthesis of functional nanostructures for emerging energy technologies.
Collapse
Affiliation(s)
- Jialin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Yuan Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Huating Liu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Siqi Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ming Yang
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|