1
|
Wang B, He X, Luo J, Chen Y, Zhang Z, Wang D, Lan S, Wang P, Han X, Zhao Y, Li Z, Hu H, Xu Y, Luo Z, Hu W, Zhu B, Sun J, Liu Y, Han G, Zhang X, Yu B, Chang K, Xue F. Ultralow-pressure mechanical-motion switching of ferroelectric polarization. SCIENCE ADVANCES 2025; 11:eadr5337. [PMID: 40305611 PMCID: PMC12042875 DOI: 10.1126/sciadv.adr5337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Ferroelectric polarization switching, achieved by mechanical forces, enables the storage of stress information in ferroelectrics and holds promise for human interface applications. The prevailing mechanical approach is locally induced flexoelectricity with large strain gradients. However, this approach usually requires huge mechanical forces, which greatly impede device applications. Here, we report an approach of using triboelectric effect to mechanically, reversibly switch ferroelectric polarization across α-In2Se3 ferroelectric memristors. Through contact electrification and electrostatic induction effects, triboelectric units are used to sensitively detect mechanical forces and generate electrical voltage pulses to trigger α-In2Se3 resistance switching. We realize multilevel resistance states under different mechanical forces, by which a neuromorphic stress system is demonstrated. Notably, we achieve the reversal of α-In2Se3 ferroelectric polarization with a record-low mechanical force of ~10 kilopascals and even with tactile touches. Our work provides a fundamental but pragmatic strategy for creating mechanical tactile ferroelectric memory devices.
Collapse
Affiliation(s)
- Baoyu Wang
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xin He
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jianjun Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Yitong Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Zhixiang Zhang
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ding Wang
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shangui Lan
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Peijian Wang
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xun Han
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuda Zhao
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zheng Li
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Huan Hu
- ZJUI Institute, International Campus, Zhejiang University, Haining 314400, China
| | - Yang Xu
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhengdong Luo
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Discipline Laboratory of Wide BandGap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Weijin Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS), Shenyang 110016, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Jian Sun
- School of Physics, Central South University, Changsha 410083, China
| | - Yan Liu
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Discipline Laboratory of Wide BandGap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Genquan Han
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Discipline Laboratory of Wide BandGap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bin Yu
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Kai Chang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Fei Xue
- College of Integrated Circuits, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Wang J, Xu S, Meyer S, Wu S, Bandyopadhyay S, He X, Miao Q, Huang S, Li P, Zhao K, Guo EJ, Ge C, Dupé B, Ghosez P, Chang K, Jin K. Manipulation of Ferroic Orders via Continuous Biaxial Strain Engineering in Multiferroic Bismuth Ferrite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417165. [PMID: 40135787 DOI: 10.1002/advs.202417165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Continuous strain engineering of multiferroics not only enhances understanding of their properties but also guides the optimization of their performances for use in electronic, optical, and magnetic devices. However, due to technical challenges in real-time monitoring of the ferroic orders, the precise evolution process remains unclear. Here, the evolution of the ferroelectric (FE) and antiferromagnetic (AFM) orders are revealed in multiferroic freestanding BiFeO3 films under sequential and anisotropic biaxial strain, using rotational anisotropy second harmonic generation (RA-SHG) technology and first-principles calculations. The change and recovery of RA-SHG patterns illustrate the reversible control of the in-plane FE polarization in the films by sequential strain application. The in-plane FE direction can be manipulated within ≈4° by strain along the (100) and (010) directions, while the AFM order is more significantly affected, with ≈8° rotation in RA-SHG patterns. This research unveils the appearance of new SHG peaks in freestanding BFO films under strain and shows that they evolve independently of FE-induced SHG linked to lattice changes, suggesting a spin structure-related variation. This work paves a new way for studying of strain-manipulated 2D multiferroics and highlights the promise of freestanding perovskite films as low-dimensional multifunctional devices.
Collapse
Affiliation(s)
- Jiesu Wang
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Shuai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sebastian Meyer
- TOM research group, Q-MAT research unit, Université de Liège, Liège, B-4000, Belgium
| | - Shiyao Wu
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Subhadeep Bandyopadhyay
- Theoretical Materials Physics, Q-MAT research unit, Université de Liège, Liège, B-4000, Belgium
| | - Xu He
- Theoretical Materials Physics, Q-MAT research unit, Université de Liège, Liège, B-4000, Belgium
| | - Qiyuan Miao
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sisi Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pengzhan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kun Zhao
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bertrand Dupé
- TOM research group, Q-MAT research unit, Université de Liège, Liège, B-4000, Belgium
| | - Philippe Ghosez
- Theoretical Materials Physics, Q-MAT research unit, Université de Liège, Liège, B-4000, Belgium
| | - Kai Chang
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Guo C, Tang S, Liang D, Wang J, Huang H. Continuously Tuning Negative Capacitance via Field-Driven Polar Skyrmions in Ferroelectric Trilayer Wrinkled Films. ACS NANO 2025; 19:8085-8092. [PMID: 39982172 DOI: 10.1021/acsnano.4c16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Polar topological structures have emerged as a frontier in research due to their significant potential in nanoscale electronic devices. The periodic and ordered arrangement, as well as the dynamic control mechanisms, are essential for their practical applications. Here, we present theoretical phase-field simulations that reveal the periodic and ordered arrangement of skyrmions and in-plane vortices within (SrTiO3)10/(PbTiO3)10/(SrTiO3)10 checkerboard-patterned wrinkled trilayer films. Each skyrmion wall exhibits a stable negative capacitance that significantly enhances the effective dielectric permittivity. The negative capacitance results from polarization reversal at the domain walls under small electric field perturbations, closely linked to the depolarization field. The direction of the external electric field can determine the location of the negative capacitance region, which is not strictly confined to the original domain walls but exhibits a shift. These topologically protected structures undergo reversible phase transitions from skyrmion and vortex states to a uniform ferroelectric state under the influence of electric fields and strain, accompanied by highly tunable permittivity. This interplay between topological structures and dielectric characteristics in flexible ferroelectric films offers the opportunity to simultaneously manipulate both topological and dielectric properties through external stimuli, thereby broadening the design possibilities for flexible electronic materials.
Collapse
Affiliation(s)
- Changqing Guo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shiyu Tang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Deshan Liang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Houbing Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Shang H, Dong H, Wu Y, Deng F, Liang X, Hu S, Shen S. Mechanical Control of Polar Patterns in Wrinkled Thin Films via Flexoelectricity. PHYSICAL REVIEW LETTERS 2024; 132:116201. [PMID: 38563913 DOI: 10.1103/physrevlett.132.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024]
Abstract
Intriguing topological polar structures in oxide nanofilms have drawn growing attention owing to their immense potential applications in nanoscale electronic devices. Here, we report a novel route to mechanically manipulate polar structures via flexoelectricity in wrinkled thin films. Our results present a flexoelectric polar transition from a nonpolar state to uniaxial polar stripes, biaxial meronlike or antimeronlike polar structures, and polar labyrinths by varying wrinkle morphologies. The evolution mechanisms and the outstanding mechanical tunability of these flexoelectric polar patterns were investigated theoretically and numerically. This strategy based on flexoelectricity for generating nontrivial polar structures will no longer rely on the superlattice structure and can be widely applicable to all centrosymmetric or noncentrosymmetric materials, providing a broader range of material and structure candidates for polar topologies.
Collapse
Affiliation(s)
- Hongxing Shang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huiting Dong
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihan Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Deng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Liang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuling Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Zhou Y, Yang C, Fu X, Liu Y, Yang Y, Wu Y, Ge C, Min T, Zeng K, Li T. Optical Modulation of MoTe 2/Ferroelectric Heterostructure via Interface Doping. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38411594 DOI: 10.1021/acsami.3c18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Optical modulation through interface doping offers a convenient and efficient way to control ferroelectric polarization, thereby advancing the utilization of ferroelectric heterostructures in nanoelectronic and optoelectronic devices. In this work, we fabricated heterostructures of MoTe2/BaTiO3/La0.7Sr0.3MnO3 (MoTe2/BTO/LSMO) and demonstrated opposite ultraviolet (UV) light-induced polarization switching behaviors depending on the varied thicknesses of MoTe2. The thickness-dependent band structure of MoTe2 film results in interface doping with opposite polarity in the respective heterostructures. The polarization field of BTO interacts with the interface charges, and an enhanced effective built-in field (Ebi) can trigger the transfer of massive UV light-induced carriers in both MoTe2 and BTO films. As a result, the interplay among the contact field of MoTe2/BTO, the polarization field, and the optically excited carriers determines the UV light-induced polarization switching behavior of the heterostructures. In addition, the electric transport characteristics of MoTe2/BTO/LSMO heterostructures reveal the interface barrier height and Ebi under opposite polarization states, as well as the presence of inherent in-gap trap states in MoTe2 and BTO films. These findings represent a further step toward achieving multifield modulation of the ferroelectric polarization and promote the potential applications in optoelectronic, logic, memory, and synaptic ferroelectric devices.
Collapse
Affiliation(s)
- Yuqing Zhou
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chao Yang
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yadong Liu
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulin Yang
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongyi Wu
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tai Min
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Tao Li
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T. Mechanical Rippling for Diverse Ferroelectric Topologies in Otherwise Nonferroelectric SrTiO_{3} Nanofilms. PHYSICAL REVIEW LETTERS 2024; 132:086801. [PMID: 38457703 DOI: 10.1103/physrevlett.132.086801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 03/10/2024]
Abstract
Polar topological structures such as skyrmions and merons have become an emerging research field due to their rich functionalities and promising applications in information storage. Up to now, the obtained polar topological structures are restricted to a few limited ferroelectrics with complex heterostructures, limiting their large-scale practical applications. Here, we circumvent this limitation by utilizing a nanoscale ripple-generated flexoelectric field as a universal means to create rich polar topological configurations in nonpolar nanofilms in a controllable fashion. Our extensive phase-field simulations show that a rippled SrTiO_{3} nanofilm with a single bulge activates polarizations that are stabilized in meron configurations, which further undergo topological transitions to Néel-type and Bloch-type skyrmions upon varying the geometries. The formation of these topologies originates from the curvature-dependent flexoelectric field, which extends beyond the common mechanism of geometric confinement that requires harsh energy conditions and strict temperature ranges. We further demonstrate that the rippled nanofilm with three-dimensional ripple patterns can accommodate other unreported modulated phases of ferroelectric topologies, which provide ferroelectric analogs to the complex spin topologies in magnets. The present study not only unveils the intriguing nanoscale electromechanical properties but also opens exciting opportunities to design various functional topological phenomena in flexible materials.
Collapse
Affiliation(s)
- Tao Xu
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Chengsheng Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sizheng Zheng
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
| | - Yu Wang
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Jie Wang
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
- Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
| | - Hiroyuki Hirakata
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takayuki Kitamura
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
7
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
8
|
Han E, Nahid SM, Rakib T, Nolan G, Ferrari PF, Hossain MA, Schleife A, Nam S, Ertekin E, van der Zande AM, Huang PY. Bend-Induced Ferroelectric Domain Walls in α-In 2Se 3. ACS NANO 2023; 17:7881-7888. [PMID: 37057994 DOI: 10.1021/acsnano.3c01311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The low bending stiffness of atomic membranes from van der Waals ferroelectrics such as α-In2Se3 allow access to a regime of strong coupling between electrical polarization and mechanical deformation at extremely high strain gradients and nanoscale curvatures. Here, we investigate the atomic structure and polarization at bends in multilayer α-In2Se3 at high curvatures down to 0.3 nm utilizing atomic-resolution scanning transmission electron microscopy, density functional theory, and piezoelectric force microscopy. We find that bent α-In2Se3 produces two classes of structures: arcs, which form at bending angles below ∼33°, and kinks, which form above ∼33°. While arcs preserve the original polarization of the material, kinks contain ferroelectric domain walls that reverse the out-of-plane polarization. We show that these kinks stabilize ferroelectric domains that can be extremely small, down to 2 atoms or ∼4 Å wide at their narrowest point. Using DFT modeling and the theory of geometrically necessary disclinations, we derive conditions for the formation of kink-induced ferroelectric domain boundaries. Finally, we demonstrate direct control over the ferroelectric polarization using templated substrates to induce patterned micro- and nanoscale ferroelectric domains with alternating polarization. Our results describe the electromechanical coupling of α-In2Se3 at the highest limits of curvature and demonstrate a strategy for nanoscale ferroelectric domain patterning.
Collapse
Affiliation(s)
- Edmund Han
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tawfiqur Rakib
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gillian Nolan
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paolo F Ferrari
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Abir Hossain
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - André Schleife
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - SungWoo Nam
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pinshane Y Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|