1
|
Shi G, Huang N, Qiao J, Zhang X, Hu F, Hu H, Zhang X, Shang J. Recent Progress in Two-Dimensional Magnetic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1759. [PMID: 39513839 PMCID: PMC11548008 DOI: 10.3390/nano14211759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area. Firstly, these 2D magnetic materials are catalogued according to magnetic coupling types. Then, several vital effects in 2D magnets are highlighted together with theoretical investigation, such as magnetic circular dichroism, magneto-optical Kerr effect, and anomalous Hall effect. After that, we forecast the potential applications of 2D magnetic materials for spintronic devices. Lastly, research advances in the attracting magnons, skyrmions and other spin textures in 2D magnets are discussed.
Collapse
Affiliation(s)
- Guangchao Shi
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Nan Huang
- Fifth Research Institute, China Electronics Technology Group Corporation, 524 Zhongshan East Road, Nanjing 210016, China
| | - Jingyuan Qiao
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Xuewen Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Fulong Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Hanwei Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Xinyu Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Jingzhi Shang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| |
Collapse
|
2
|
Adhikari S, Wang Y, Spaeth P, Scalerandi F, Albrecht W, Liu J, Orrit M. Magnetization Switching of Single Magnetite Nanoparticles Monitored Optically. NANO LETTERS 2024; 24:9861-9867. [PMID: 39078741 PMCID: PMC11328164 DOI: 10.1021/acs.nanolett.4c01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Magnetic nanomaterials record information as fast as picoseconds in computer memories but retain it for millions of years in ancient rocks. This exceedingly broad range of times is covered by hopping over a potential energy barrier through temperature, ultrafast optical excitation, mechanical stress, or microwaves. As switching depends on nanoparticle size, shape, orientation, and material properties, only single-nanoparticle studies can eliminate the ensemble heterogeneity. Here, we push the sensitivity of photothermal magnetic circular dichroism down to individual 20 nm magnetite nanoparticles. Single-particle magnetization curves display superparamagnetic to ferromagnetic behaviors, depending on the size, shape, and orientation. Some nanoparticles undergo thermally activated switching on time scales of milliseconds to minutes. Surprisingly, the switching barrier varies with time, leading to dynamical heterogeneity, a phenomenon familiar in protein dynamics and supercooled liquids. Our observations will help to identify the external parameters influencing magnetization switching and, eventually, to control it, an important step for many applications.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Yonghui Wang
- Huygens-Kamerlingh Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
- School of Mechatronics Engineering, Harbin Institute of Technology; Harbin 150001, People's Republic of China
| | - Patrick Spaeth
- Huygens-Kamerlingh Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Francesca Scalerandi
- Department of Sustainable Energy Materials, AMOLF; Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Wiebke Albrecht
- Department of Sustainable Energy Materials, AMOLF; Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Junyan Liu
- School of Mechatronics Engineering, Harbin Institute of Technology; Harbin 150001, People's Republic of China
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Adhikari S, Efremova MV, Spaeth P, Koopmans B, Lavrijsen R, Orrit M. Single-Particle Photothermal Circular Dichroism and Photothermal Magnetic Circular Dichroism Microscopy. NANO LETTERS 2024; 24:5093-5103. [PMID: 38578845 PMCID: PMC11066954 DOI: 10.1021/acs.nanolett.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Recent advances in single-particle photothermal circular dichroism (PT CD) and photothermal magnetic circular dichroism (PT MCD) microscopy have shown strong promise for diverse applications in chirality and magnetism. Photothermal circular dichroism microscopy measures direct differential absorption of left- and right-circularly polarized light by a chiral nanoobject and thus can measure a pure circular dichroism signal, which is free from the contribution of circular birefringence and linear dichroism. Photothermal magnetic circular dichroism, which is based on the polar magneto-optical Kerr effect, can probe the magnetic properties of a single nanoparticle (of sizes down to 20 nm) optically. Single-particle measurements enable studies of the spatiotemporal heterogeneity of magnetism at the nanoscale. Both PT CD and PT MCD have already found applications in chiral plasmonics and magnetic nanomaterials. Most importantly, the advent of these microscopic techniques opens possibilities for many novel applications in biology and nanomaterial science.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maria V. Efremova
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patrick Spaeth
- Department
of Sustainable Energy Materials, AMOLF; Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Bert Koopmans
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Reinoud Lavrijsen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
4
|
Adhikari S, Li J, Wang Y, Ruijs L, Liu J, Koopmans B, Orrit M, Lavrijsen R. Optical Monitoring of the Magnetization Switching of Single Synthetic-Antiferromagnetic Nanoplatelets with Perpendicular Magnetic Anisotropy. ACS PHOTONICS 2023; 10:1512-1518. [PMID: 37215319 PMCID: PMC10197163 DOI: 10.1021/acsphotonics.3c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Synthetic antiferromagnetic nanoplatelets (NPs) with a large perpendicular magnetic anisotropy (SAF-PMA NPs) have a large potential in future local mechanical torque-transfer applications for e.g., biomedicine. However, the mechanisms of magnetization switching of these structures at the nanoscale are not well understood. Here, we have used a simple and relatively fast single-particle optical technique that goes beyond the diffraction limit to measure photothermal magnetic circular dichroism (PT MCD). This allows us to study the magnetization switching as a function of applied magnetic field of single 122 nm diameter SAF-PMA NPs with a thickness of 15 nm. We extract and discuss the differences between the switching field distributions of large ensembles of NPs and of single NPs. In particular, single-particle PT MCD allows us to address the spatial and temporal heterogeneity of the magnetic switching fields of the NPs at the single-particle level. We expect this new insight to help understand better the dynamic torque transfer, e.g., in biomedical and microfluidic applications.
Collapse
Affiliation(s)
- S. Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, LION, 2300 RA Leiden, Netherlands
| | - J. Li
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Y. Wang
- Huygens-Kamerlingh
Onnes Laboratory, LION, 2300 RA Leiden, Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - L. Ruijs
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - J. Liu
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - B. Koopmans
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - M. Orrit
- Huygens-Kamerlingh
Onnes Laboratory, LION, 2300 RA Leiden, Netherlands
| | - R. Lavrijsen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Wang Y, Adhikari S, van der Meer H, Liu J, Orrit M. Thousand-Fold Enhancement of Photothermal Signals in Near-Critical CO 2. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3619-3625. [PMID: 36865992 PMCID: PMC9969513 DOI: 10.1021/acs.jpcc.2c08575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Photothermal (PT) microscopy has shown strong promise in imaging single absorbing nano-objects in soft matter and biological systems. PT imaging at ambient conditions usually requires a high laser power for a sensitive detection, which prevents application to light-sensitive nanoparticles. In a previous study of single gold nanoparticles, we showed that the photothermal signal can be enhanced more than 1000-fold in near-critical xenon compared to that in glycerol, a typical medium for PT detection. In this report, we show that carbon dioxide (CO2), a much cheaper gas than xenon, can enhance PT signals in a similar way. We confine near-critical CO2 in a thin capillary which easily withstands the high near-critical pressure (around 74 bar) and facilitates sample preparation. We also demonstrate enhancement of the magnetic circular dichroism signal of single magnetite nanoparticle clusters in supercritical CO2. We have performed COMSOL simulations to support and explain our experimental findings.
Collapse
Affiliation(s)
- Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Harmen van der Meer
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Junyan Liu
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Adhikari S, Orrit M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS PHOTONICS 2022; 9:3486-3497. [PMID: 36411819 PMCID: PMC9673138 DOI: 10.1021/acsphotonics.2c01205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Circular dichroism (CD) is a standard method for the analysis of biomolecular conformation. It is very reliable when applied to molecules, but requires relatively large amounts of solution. Plasmonics offer the perspective of enhancement of CD signals, which would extend CD spectrometry to smaller amounts of molecules and to weaker chiral signals. However, plasmonic enhancement comes at the cost of additional complications: averaging over all orientations is no longer possible or reliable, linear dichroism leaks into CD signals because of experimental imperfections, scattering and its interference with the incident beam must be taken into account, and the interaction between chiral molecules and possibly chiral plasmonic structures considerably complicates the interpretation of measured signals. This Perspective aims to explore the motivations and problems of plasmonic chirality and to re-evaluate present and future solutions.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CALeiden, Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CALeiden, Netherlands
| |
Collapse
|