1
|
K N, A P S. Unveiling the Radiative Electron-Hole Recombination of MoS 2 Nanostructures at Extreme pH Conditions. J Fluoresc 2025; 35:1467-1474. [PMID: 38381234 DOI: 10.1007/s10895-024-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Nanostructures of MoS2 are in wide research for optoelectronic, energy and biological applications. Opto-electronic and biological applications requires the tuning of photoluminescence properties of MoS2 nanostructures. In this article, nanosized MoS2 is hydrothermally synthesized, and photoluminescence at extreme pH conditions (pH 1 and 13) is examined. As the photoluminescence gives a key to probe the radiative electron-hole recombination, here, photoluminescence emissions are used as an indicator to suggest the pattern of electron-hole recombination in the material at extreme pH conditions. Raman spectroscopy, dynamic light scattering, Scanning electron microscopic image and energy dispersive x-ray analysis are done for material confirmation. At pH 1 and 13 as-synthesized nanostructured MoS2 exhibited both upconversion and downconversion photoluminescence. The intensity of photoluminescence is varied with respect to pH. Excitation-dependent photoluminescence mechanisms and preliminary understanding on the ratio of quantum yields and life span of excited state of as-synthesized nanostructured MoS2 are unveiled here.
Collapse
Affiliation(s)
- Nayana K
- Department of Physics, Government Victoria College, Affiliated to University of Calicut, Palakkad, 678001, Kerala, India
- Department of Physics, N. S. S. College, Affiliated to University of Calicut, Ottapalam, Palakkad, 679103, Kerala, India
| | - Sunitha A P
- Department of Physics, Government Victoria College, Affiliated to University of Calicut, Palakkad, 678001, Kerala, India.
| |
Collapse
|
2
|
Goswami T, Bhatt H, Yadav DK, Ghosh HN. Ultrafast broadband spectroscopy of widely spread excitonic features in WSe 2 nanosheets. NANOSCALE 2025; 17:5213-5221. [PMID: 39871774 DOI: 10.1039/d4nr03874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe2 is one such extremely promising solar energy material. It has absorption throughout the UV-Vis-NIR region with the existence of four excitonic features, just like MoS2 and WS2. However, stability issues and the absence of any robust synthetic route limit their practical applications. Herein, we have successfully synthesized atomically thin stable WSe2 nanosheets using a very effective colloidal hot injection method and further studied the optical properties of this material using femtosecond transient absorption spectroscopy. We probed all four excitonic features of WSe2 spread throughout the visible region. The dynamics of the high-energy excitons were found to be distinctively slower when compared to their band edge counterparts, adding an additional advantage in optoelectronic applications. We delved further into the factors governing exciton dynamics within WSe2, uncovering the strong influence of the electronic band structure. Importantly, our study highlights the importance of all four excitonic features in a 2D TMDC material, which emerge in the system irrespective of the excitation wavelength and influence each other.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab-140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab-140306, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab-140306, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
3
|
Qu J, Wei Y, Zhao L, Tan R, Li W, Shi H, Zhang Y, Yang J, Gao B, Li X. Defect-Mediated Exciton Localization and Relaxation in Monolayer MoS 2. ACS NANO 2024; 18:34322-34331. [PMID: 39648825 DOI: 10.1021/acsnano.4c12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Defects in chemical vapor deposition (CVD)-grown monolayer MoS2 are unavoidable and provide a powerful approach to creating single-photon emitters and quantum information systems through localizing excitons. However, insight into the A- trion and B/C exciton localization in monolayer MoS2 remains elusive. Here, we investigate defect-mediated A- trion and B/C exciton localization and relaxation in CVD-grown monolayer MoS2 samples via transient absorption spectroscopy. The localization rate of A- trions is five times faster than B excitons, which is attributed to the distinctions in the Bohr radius, diffusion rate, and multiphonon emission. Furthermore, we obtain unambiguous experimental evidence for the direct excitation of localized C excitons. Varying gap energy at the band-nesting region revealed by first-principles calculations explains the anomalous dependence of localized C exciton energy on delay time. We also find that the rapid dissociation of localized C excitons features a short characteristic time of ∼0.14 ps, while the measured relaxation time is much longer. Our results provide a comprehensive picture of the defect-mediated excitonic relaxation and localization dynamics in monolayer MoS2.
Collapse
Affiliation(s)
- Jiafan Qu
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Yadong Wei
- Technology Innovation Center of Materials and Devices for Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Zhao
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Ruoxi Tan
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Weiqi Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Hongyan Shi
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yueling Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianqun Yang
- Technology Innovation Center of Materials and Devices for Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Gao
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Xingji Li
- Technology Innovation Center of Materials and Devices for Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Xin W, Zhong W, Shi Y, Shi Y, Jing J, Xu T, Guo J, Liu W, Li Y, Liang Z, Xin X, Cheng J, Hu W, Xu H, Liu Y. Low-Dimensional-Materials-Based Photodetectors for Next-Generation Polarized Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306772. [PMID: 37661841 DOI: 10.1002/adma.202306772] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yujie Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yimeng Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiawei Jing
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongzhu Liang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xing Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinluo Cheng
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
5
|
Liu W, Yang X, Wang Z, Li Y, Li J, Feng Q, Xie X, Xin W, Xu H, Liu Y. Self-powered and broadband opto-sensor with bionic visual adaptation function based on multilayer γ-InSe flakes. LIGHT, SCIENCE & APPLICATIONS 2023; 12:180. [PMID: 37488112 PMCID: PMC10366227 DOI: 10.1038/s41377-023-01223-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Visual adaptation that can autonomously adjust the response to light stimuli is a basic function of artificial visual systems for intelligent bionic robots. To improve efficiency and reduce complexity, artificial visual systems with integrated visual adaptation functions based on a single device should be developed to replace traditional approaches that require complex circuitry and algorithms. Here, we have developed a single two-terminal opto-sensor based on multilayer γ-InSe flakes, which successfully emulated the visual adaptation behaviors with a new working mechanism combining the photo-pyroelectric and photo-thermoelectric effect. The device can operate in self-powered mode and exhibit good human-eye-like adaptation behaviors, which include broadband light-sensing image adaptation (from ultraviolet to near-infrared), near-complete photosensitivity recovery (99.6%), and synergetic visual adaptation, encouraging the advancement of intelligent opto-sensors and machine vision systems.
Collapse
Affiliation(s)
- Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Xuhui Yang
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Zhongqiang Wang
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| | - Jixiu Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Qiushi Feng
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Xiuhua Xie
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, China
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| |
Collapse
|
6
|
Shi J, Lin Z, Zhu Z, Zhou J, Xu GQ, Xu QH. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS 2 at Room Temperature. ACS NANO 2022; 16:15862-15872. [PMID: 36169603 DOI: 10.1021/acsnano.2c02276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The optoelectronic properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers such as WS2 are largely dominated by excitons due to strong Coulomb interactions in these 2D confined monolayers, which lead to formation of Rydberg-like excitonic states below the free quasiparticle band gap. The precise knowledge of high order Rydberg excitonic states is of great importance for both fundamental understanding such as many-electron effects and device applications such as optical switching and quantum process information. Bright excitonic states could be probed by linear optical spectroscopy, while probing dark excitonic states generally requires nonlinear optical (NLO) spectroscopy. Conventional optical methods for probing high-order Rydberg excitonic states were generally performed at cryogenic temperatures to ensure enough signal-to-noise ratio (SNR) and narrow line width. Here we have designed a hybrid nanostructure of monolayer WS2 integrated with a plasmonic cavity and investigated their NLO properties at the single particle level. Giant enhancement in NLO responses, stronger excitonic resonance effects, and narrowed line widths of NLO excitation spectra were observed when monolayer WS2 was placed in our carefully designed plasmonic cavity. Optimum enhancement of 1000-, 3000-, and 3800-fold were achieved for two-photon photoluminescence (2PPL), second harmonic generation (SHG), and third-harmonic generation (THG), respectively, in the optimized cavity structure. The line width of SHG excitation spectra was reduced from 43 down to 15 meV. Plasmon enhanced NLO responses brought improved SNR and spectral resolution, which allowed us to distinguish discrete excitonic states with small energy differences at room temperature. By using three complementary NLO techniques in combination with linear optical spectroscopy, energies of Rydberg excitonic states of A (1s, 2s, 2p, 3s, 3p, 4s), B (1s), and C and D excitons of monolayer WS2 have been accurately determined, which allow us to determine exciton binding energy and quasiparticle bandgap. It was interesting to find that the 2p lies 30 meV below 2s, which lends strong support to the theoretical prediction of nonlocal dielectric screening effects based on a non-hydrogenic model. Our results show that plasmon enhanced NLO spectroscopy could serve as a general method for probing high order Rydberg excitonic states of 2D materials.
Collapse
Affiliation(s)
- Jia Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zexin Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ziyu Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Guo Qin Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|