1
|
Gunasekara H, Cheng YS, Perez-Silos V, Zevallos-Morales A, Abegg D, Burgess A, Gong LW, Minshall RD, Adibekian A, Murga-Zamalloa C, Ondrus AE, Hu YS. Unveiling cellular communications through rapid pan-membrane-protein labeling. Nat Commun 2025; 16:3584. [PMID: 40234465 PMCID: PMC12000395 DOI: 10.1038/s41467-025-58779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Dynamic protein distribution within and across the plasma membrane is pivotal in regulating cell communication. However, rapid, high-density labeling methods for multiplexed live imaging across diverse cell types remain scarce. Here, we demonstrate N-hydroxysuccinimide (NHS)-ester-based amine crosslinking of fluorescent dyes to uniformly label live mammalian cell surface proteins. Using model cell systems, we capture previously elusive membrane topology and cell-cell interactions. Live imaging shows transient membrane protein accumulation at cell-cell contacts and bidirectional migration patterns guided by membrane fibers in DC2.4 dendritic cells. Multiplexed superresolution imaging reveals the biogenesis of membrane tunneling nanotubes that facilitate intercellular transfer in DC2.4 cells, and caveolin 1-dependent endocytosis of insulin receptors in HEK293T cells. 3D superresolution imaging reveals membrane topology remodeling in response to stimulation, generation of microvesicles, and phagocytic activities in Jurkat T cells. Furthermore, NHS-labeling remains stable in vivo, enabling visualization of intercellular transfer among splenocytes using a T cell lymphoma mouse model.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Yu-Shiuan Cheng
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Vanessa Perez-Silos
- Department of Pathology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | | | - Daniel Abegg
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Richard D Minshall
- Departments of Anesthesiology & Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Alexander Adibekian
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Carlos Murga-Zamalloa
- Department of Pathology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Alison E Ondrus
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA.
- University of Illinois Cancer Center, Chicago, IL, 60612, USA.
- Department of Biomedical Engineering, Colleges of Engineering and Medicine, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
Li J, Hu J, Liu AA, Liu C, Pang DW. Quantum Dots for Chemical Metrology. Anal Chem 2025; 97:6891-6910. [PMID: 40152213 DOI: 10.1021/acs.analchem.4c06794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Huang Z, Wang M, Chen Y, Tang H, Tang K, Zhao M, Yang W, Zhou Z, Tian J, Xiang W, Li S, Luo Q, Liu L, Zhao Y, Li T, Zhou J, Chen L. Glioblastoma-derived migrasomes promote migration and invasion by releasing PAK4 and LAMA4. Commun Biol 2025; 8:91. [PMID: 39833606 PMCID: PMC11747271 DOI: 10.1038/s42003-025-07526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Almost all high-grade gliomas, particularly glioblastoma (GBM), are highly migratory and aggressive. Migrasomes are organelles produced by highly migratory cells capable of mediating intercellular communication. Thus, GBM cells may produce migrasomes during migration. However, it remains unclear whether migrasomes can influence GBM migration and invasion. In this study, we observed the presence and formation of migrasomes in GBM cells. We found that expression levels of key migrasome formation factor, tetraspanin 4 (TSPAN4), correlated positively with pathological grade and poor prognosis of GBM based on the databases and clinical samples analysis. Subsequently, we knocked down TSPAN4 and found that GBM cell migration and invasion were significantly inhibited due to the reduced formation of migrasomes. We further confirmed that migrasomes are enriched in extracellular matrix (ECM)-related proteins such as p21-activating kinase 4 (PAK4) and laminin alpha 4 (LAMA4). Our experimental results suggest that migrasomes promote GBM cells migration by releasing such proteins into the extracellular space. Overall, we identified migrasomes in GBM and the molecular mechanisms by which they regulate them, providing potential targets for treating GBM.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Yitian Chen
- Faculty of Health Sciences, University of Macau, Macau, 999078, PR China
| | - Hua Tang
- Department of Neurosurgery, The People's Hospital of Jianyang City, Chengdu, 641400, PR China
| | - Kuo Tang
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Mingkuan Zhao
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Wei Yang
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Qinglian Luo
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Luotong Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Yanru Zhao
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Tao Li
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China.
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China.
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
4
|
Herath HDW, Hu YS. Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible. NANOSCALE 2025; 17:1213-1224. [PMID: 39618290 PMCID: PMC12042815 DOI: 10.1039/d4nr03838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanoparticles (NPs) have attracted considerable attention in nanomedicine, particularly in harnessing and manipulating immune cells. However, the current understanding of the interactions between NPs and immune cells at the nanoscale remains limited. Advancing this knowledge guides the design principles of NPs. This review offers a historical perspective on the synergistic evolution of immunology and optical microscopy, examines the current landscape of NP applications in immunology, and explores the advancements in super-resolution imaging techniques, which provide new insights into nanoparticle-immune cell interactions. Key findings from recent studies are discussed, along with challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Herath D W Herath
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| |
Collapse
|
5
|
Mei J, Cao X, Zhou B, Zhu W, Wang M. Migrasomes: Emerging organelles for unveiling physiopathology and advancing clinical implications. Life Sci 2024; 358:123152. [PMID: 39454990 DOI: 10.1016/j.lfs.2024.123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Migrasomes are newly identified cellular organelles with a pomegranate-like structure and specifically generated by migrating cells. The mechanisms underlying migrasome biogenesis and methods for their isolation are gradually being elucidated. These organelles are pivotal in cell-to-cell communication and the maintenance of mitochondrial homeostasis. Their involvement in a diverse array of physiological and pathological processes is increasingly recognized. Despite these advancements, research on migrasomes is still in its early stages. It is imperative to delve deeper into the intricate mechanisms and functions of migrasomes to fully understand their role in physiopathology. In this review, we summarize the current research progress on migrasomes, including their distribution, biogenesis, purification and identification techniques, biological functionalities, and roles in physiological and pathological processes. We particularly highlight their potentials in disease diagnosis and therapy and point out the challenges facing us, aiming to provide novel insights into the emerging organelles.
Collapse
Affiliation(s)
- Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
6
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Gunasekara H, Perera T, Chao CJ, Bruno J, Saed B, Anderson J, Zhao Z, Hu YS. Phalloidin-PAINT: Enhanced quantitative nanoscale imaging of F-actin. Biophys J 2024; 123:3051-3064. [PMID: 38961624 PMCID: PMC11427775 DOI: 10.1016/j.bpj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
We present phalloidin-based points accumulation for imaging in nanoscale topography (phalloidin-PAINT), enabling quantitative superresolution imaging of filamentous actin (F-actin) in the cell body and delicate membrane protrusions. We demonstrate that the intrinsic phalloidin dissociation enables PAINT superresolution microscopy in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-PAINT are its ability to consistently quantify F-actin at the nanoscale throughout the entire cell and its enhanced preservation of fragile cellular structures. In a proof-of-concept study, we employed phalloidin-PAINT to superresolve F-actin structures in U2OS and dendritic cells (DCs). We demonstrate more consistent F-actin quantification in the cell body and structurally delicate membrane protrusions of DCs compared with direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse DCs as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane protrusions on the culture glass surface after lipopolysaccharide exposure. The concept of our work opens new possibilities for quantitative protein-specific PAINT using commercially available reagents.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Joshua Bruno
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Saed B, Ramseier NT, Perera T, Anderson J, Burnett J, Gunasekara H, Burgess A, Jing H, Hu YS. Increased vesicular dynamics and nanoscale clustering of IL-2 after T cell activation. Biophys J 2024; 123:2343-2353. [PMID: 38532626 PMCID: PMC11331045 DOI: 10.1016/j.bpj.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
T cells coordinate intercellular communication through the meticulous regulation of cytokine secretion. Direct visualization of vesicular transport and intracellular distribution of cytokines provides valuable insights into the temporal and spatial mechanisms involved in regulation. Employing Jurkat E6-1 T cells and interleukin-2 (IL-2) as a model system, we investigated vesicular dynamics using single-particle tracking and the nanoscale distribution of intracellular IL-2 in fixed T cells using superresolution microscopy. Live-cell imaging revealed that in vitro activation resulted in increased vesicular dynamics. Direct stochastic optical reconstruction microscopy and 3D structured illumination microscopy revealed nanoscale clustering of IL-2. In vitro activation correlated with spatial accumulation of IL-2 nanoclusters into more pronounced and elongated clusters. These observations provide visual evidence that accelerated vesicular transport and spatial concatenation of IL-2 clusters at the nanoscale may constitute a potential mechanism for modulating cytokine release by Jurkat T cells.
Collapse
Affiliation(s)
- Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Neal T Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | | | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Gunasekara H, Perera T, Chao CJ, Bruno J, Saed B, Anderson J, Zhao Z, Hu YS. Quantitative Superresolution Imaging of F-Actin in the Cell Body and Cytoskeletal Protrusions Using Phalloidin-Based Single-Molecule Labeling and Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583337. [PMID: 38496456 PMCID: PMC10942307 DOI: 10.1101/2024.03.04.583337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We present single-molecule labeling and localization microscopy (SMLLM) using dye-conjugated phalloidin to achieve enhanced superresolution imaging of filamentous actin (F-actin). We demonstrate that the intrinsic phalloidin dissociation enables SMLLM in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-based SMLLM are better preservation of cellular structures sensitive to mechanical and shear forces during standard sample preparation and more consistent F-actin quantification at the nanoscale. In a proof-of-concept study, we employed SMLLM to super-resolve F-actin structures in U2OS and dendritic cells (DCs) and demonstrate more consistent F-actin quantification in the cell body and structurally delicate cytoskeletal proportions, which we termed membrane fibers, of DCs compared to direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse dendritic cells as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane fibers on the culture glass surface after lipopolysaccharide exposure. While our work demonstrates SMLLM for F-actin, the concept opens new possibilities for protein-specific single-molecule labeling and localization in the same step using commercially available reagents.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Joshua Bruno
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
10
|
Zhu Y, Cui M, Liu Y, Ma Z, Xi J, Tian Y, Hu J, Song C, Fan L, Li Q. Uptake Quantification of Antigen Carried by Nanoparticles and Its Impact on Carrier Adjuvanticity Evaluation. Vaccines (Basel) 2023; 12:28. [PMID: 38250841 PMCID: PMC10818693 DOI: 10.3390/vaccines12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Nanoparticles have been identified in numerous studies as effective antigen delivery systems that enhance immune responses. However, it remains unclear whether this enhancement is a result of increased antigen uptake when carried by nanoparticles or the adjuvanticity of the nanoparticle carriers. Consequently, it is important to quantify antigen uptake by dendritic cells in a manner that is free from artifacts in order to analyze the immune response when antigens are carried by nanoparticles. In this study, we demonstrated several scenarios (antigens on nanoparticles or inside cells) that are likely to contribute to the generation of artifacts in conventional fluorescence-based quantification. Furthermore, we developed the necessary assay for accurate uptake quantification. PLGA NPs were selected as the model carrier system to deliver EsxB protein (a Staphylococcus aureus antigen) in order to testify to the feasibility of the established method. The results showed that for the same antigen uptake amount, the antigen delivered by PLGA nanoparticles could elicit 3.6 times IL-2 secretion (representative of cellular immune response activation) and 1.5 times IL-12 secretion (representative of DC maturation level) compared with pure antigen feeding. The findings above give direct evidence of the extra adjuvanticity of PLGA nanoparticles, except for their delivery functions. The developed methodology allows for the evaluation of immune cell responses on an antigen uptake basis, thus providing a better understanding of the origin of the adjuvanticity of nanoparticle carriers. Ultimately, this research provides general guidelines for the formulation of nano-vaccines.
Collapse
Affiliation(s)
- Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Zhengjun Ma
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Jiayue Xi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yi Tian
- Department of Oncology, Airforce Medical Center of PLA, 30th Fu Cheng Road, Beijing 100142, China;
| | - Jinwei Hu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, 127th Youyi West Road, Xi’an 710072, China;
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
11
|
Zhang X, Yao L, Meng Y, Li B, Yang Y, Gao F. Migrasome: a new functional extracellular vesicle. Cell Death Discov 2023; 9:381. [PMID: 37852963 PMCID: PMC10584828 DOI: 10.1038/s41420-023-01673-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Migrasome is a novel cellular organelle produced during cell migration, and its biogenesis depends on the migration process. It is generated in a variety of cells such as immune cells, metastatic tumor cells, other special functional cells like podocytes and cells in developing organisms. It plays important roles in various fields especially in the information exchange between cells. The discovery of migrasome, as an important supplement to the extracellular vesicle system, provides new mechanisms and targets for comprehending various biological or pathological processes. In this article, we will review the discovery, structure, distribution, detection, biogenesis, and removal of migrasomes and mainly focus on summarizing its biological functions in cell-to-cell communication, homeostatic maintenance, embryonic development and multiple diseases. This review also creates prospects for the possible research directions and clinical applications of migrasomes in the future.
Collapse
Affiliation(s)
- Xide Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuanyuan Meng
- Naval Medical University, Department of Traditional Chinese Medicine, Affiliated Hospital 1, 200433, Shanghai, P. R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| |
Collapse
|
12
|
Le N, Kim K. Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges. Int J Mol Sci 2023; 24:12682. [PMID: 37628860 PMCID: PMC10454335 DOI: 10.3390/ijms241612682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Quantum dots (QDs) are a type of nanoparticle with exceptional photobleaching-resistant fluorescence. They are highly sought after for their potential use in various optical-based biomedical applications. However, there are still concerns regarding the use of quantum dots. As such, much effort has been invested into understanding the mechanisms behind the behaviors of QDs, so as to develop safer and more biocompatible quantum dots. In this mini-review, we provide an update on the recent advancements regarding the use of QDs in various biomedical applications. In addition, we also discuss# the current challenges and limitations in the use of QDs and propose a few areas of interest for future research.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
13
|
Jiang Y, Liu X, Ye J, Ma Y, Mao J, Feng D, Wang X. Migrasomes, a new mode of intercellular communication. Cell Commun Signal 2023; 21:105. [PMID: 37158915 PMCID: PMC10165304 DOI: 10.1186/s12964-023-01121-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Migrasomes are newly discovered extracellular vesicles (EVs) that are formed in migrating cells and mediate intercellular communication. However, their size, biological generation, cargo packaging, transport, and effects on recipient cells by migrasomes are different from those of other EVs. In addition to mediating organ morphogenesis during zebrafish gastrulation, discarding damaged mitochondria, and lateral transport of mRNA and proteins, growing evidence has demonstrated that migrasomes mediate a variety of pathological processes. In this review, we summarize the discovery, mechanisms of formation, isolation, identification, and mediation of cellular communication in migrasomes. We discuss migrasome-mediated disease processes, such as osteoclast differentiation, proliferative vitreoretinopathy, tumor cell metastasis by PD-L1 transport, immune cell chemotaxis to the site of infection by chemokines, angiogenesis promotion via angiogenic factors by immune cells, and leukemic cells chemotaxis to the site of mesenchymal stromal cells. Moreover, as new EVs, we propose the potential of migrasomes for disease diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, 213200, People's Republic of China.
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
14
|
Zhang Y, Zhang M, Xie Z, Ding Y, Huang J, Yao J, Lv Y, Zuo J. Research Progress and Direction of Novel Organelle-Migrasomes. Cancers (Basel) 2022; 15:cancers15010134. [PMID: 36612129 PMCID: PMC9817827 DOI: 10.3390/cancers15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Migrasomes are organelles that are similar in structure to pomegranates, up to 3 μm in diameter, and contain small vesicles with a diameter of 50-100 nm. These membranous organelles grow at the intersections or tips of retracting fibers at the back of migrating cells. The process by which cells release migrasomes and their contents outside the cell is called migracytosis. The signal molecules are packaged in the migrasomes and released to the designated location by migrasomes to activate the surrounding cells. Finally, the migrasomes complete the entire process of information transmission. In this sense, migrasomes integrate time, space, and specific chemical information, which are essential for regulating physiological processes such as embryonic development and tumor invasion and migration. In this review, the current research progress of migrasomes, including the discovery of migrasomes and migracytosis, the structure of migrasomes, and the distribution and functions of migrasomes is discussed. The migratory marker protein TSPAN4 is highly expressed in various cancers and is associated with cancer invasion and migration. Therefore, there is still much research space for the pathogenesis of migratory bodies and cancer. This review also makes bold predictions and prospects for the research directions of the combination of migrasomes and clinical applications.
Collapse
Affiliation(s)
- Yu Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Minghui Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Zhuoyi Xie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Yubo Ding
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jialu Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Jingwei Yao
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Yufan Lv
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jianhong Zuo
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Clinical Laboratory, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421900, China
- Correspondence:
| |
Collapse
|