1
|
Liu Y, Meng Q, Mahmoudi P, Wang Z, Zhang J, Yang J, Li W, Wang D, Li Z, Sorrell CC, Li S. Advancing Superconductivity with Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405009. [PMID: 39104281 DOI: 10.1002/adma.202405009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Indexed: 08/07/2024]
Abstract
The development of superconducting materials has attracted significant attention not only for their improved performance, such as high transition temperature (TC), but also for the exploration of their underlying physical mechanisms. Recently, considerable efforts have been focused on interfaces of materials, a distinct category capable of inducing superconductivity at non-superconducting material interfaces or augmenting the TC at the interface between a superconducting material and a non-superconducting material. Here, two distinct types of interfaces along with their unique characteristics are reviewed: interfacial superconductivity and interface-enhanced superconductivity, with a focus on the crucial factors and potential mechanisms responsible for enhancing superconducting performance. A series of materials systems is discussed, encompassing both historical developments and recent progress from the perspectives of technical innovations and the exploration of new material classes. The overarching goal is to illuminate pathways toward achieving high TC, expanding the potential of superconducting parameters across interfaces, and propelling superconductivity research toward practical, high-temperature applications.
Collapse
Affiliation(s)
- Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qingxiao Meng
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pezhman Mahmoudi
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ziyi Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ji Zhang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Zhi Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Charles C Sorrell
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
2
|
de Bragança RH, Croitoru MD, Shanenko AA, Aguiar JA. Effect of Material-Dependent Boundaries on the Interference Induced Enhancement of the Surface Superconductivity Temperature. J Phys Chem Lett 2023:5657-5664. [PMID: 37311195 DOI: 10.1021/acs.jpclett.3c00835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using the tight-binding Bogoliubov-de Gennes formalism, we describe the influence of the surface potential on the superconducting critical temperature at the surface. Surface details are taken into account within the framework of the self-consistent Lang-Kohn effective potential. The regimes of strong and weak coupling of superconducting correlations are considered. Our study reveals that, although the enhancement of the surface critical temperature, originating from the enhancement of the localized correlation due to the constructive interference between quasiparticle bulk orbits, can be sufficiently affected by the surface potential, this influence, nonetheless, strongly depends on the bulk material parameters, such as the effective electron density parameter and Fermi energy, and is likely to be negligible for some materials, in particular for narrow-band metals. Thus, superconducting properties of a surface can be controlled by the surface/interface potential properties, which offer an additional tuning knob for the superconducting state at the surface/interface.
Collapse
Affiliation(s)
- R H de Bragança
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Prof. Aníbal Fernandes, s/n, 50670-901, Recife-PE, Brazil
| | - M D Croitoru
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Prof. Aníbal Fernandes, s/n, 50670-901, Recife-PE, Brazil
- HSE University, 101000, Moscow, Russia
| | | | - J Albino Aguiar
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Prof. Aníbal Fernandes, s/n, 50670-901, Recife-PE, Brazil
| |
Collapse
|
3
|
Heveling J. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Josef Heveling
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|