1
|
Elpa DP, Urban PL. Bubble-Assisted Sample Preparation Techniques for Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39535307 DOI: 10.1002/mas.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This review delves into the efficacy of utilizing bubbles to extract analytes into the gas phase, offering a faster and greener alternative to traditional sample preparation methods for mass spectrometry. Generating numerous bubbles in liquids rapidly transfers volatile and surface-active species to the gas phase. Recently, effervescence has found application in chemical laboratories for swiftly extracting volatile organic compounds, facilitating instantaneous analysis. In the so-called fizzy extraction, liquid matrices are pressurized with gas and then subjected to sudden decompression to induce effervescence. Alternatively, specifically designed effervescent tablets are introduced into the liquid samples. In situ bubble generation has also enhanced dispersion of extractant in microextraction techniques. Furthermore, droplets from bursting bubbles are collected to analyze non-volatile species. Various methods exist to induce bubbling for sample preparation. The polydispersity of generated bubbles and the limited control of bubble size pose critical challenges in the stability of the bubble-liquid interface and the ability to quantify analytes using bubble-based sample preparation techniques. This review covers different bubble-assisted sample preparation methods and gives practical guidance on their implementation in mass spectrometry workflows. Traditional, offline, and online approaches for sample preparation relying on bubbles are discussed. Unconventional bubbling techniques for sample preparation are also covered.
Collapse
Affiliation(s)
- Decibel P Elpa
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Yang S, Lu X, Wang X. A Perspective on the Controversy over Global Emission Fluxes of Microplastics from Ocean into the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12304-12312. [PMID: 38935526 DOI: 10.1021/acs.est.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Since the transfer of microplastic across the sea-air interface was first reported in 2020, numerous studies have been conducted on its emission flux estimation. However, these studies have shown significant discrepancies in the estimated contribution of oceanic sources to global atmospheric microplastics, with evaluations ranging from predominant to negligible, varying by 4 orders of magnitude from 7.7 × 10-4 to 8.6 megatons per year, thereby creating considerable confusion in the research on the microplastic cycle. Here, we provide a perspective by applying the well-established theory of particulate transfer through the sea-air interface. The upper limit of global sea-air emission flux microplastics was calculated, aiming to constrain the controversy in the previously reported fluxes. Specifically, the flux of sub-100 μm microplastic cannot exceed 0.01 megatons per year, and for sub-0.1 μm nanoplastics, it would not exceed 3 × 10-7 megatons per year. Bridging this knowledge gap is crucial for a comprehensive understanding of the sea-air limb in the "plastic cycle", and facilitates the management of future microplastic pollution.
Collapse
Affiliation(s)
- Shanye Yang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohui Lu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Great Bay Area, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
3
|
Yang Z, Barbhai S, Ji B, Feng J. Effect of surface viscoelasticity on top jet drops produced by bursting bubbles. SOFT MATTER 2024; 20:4868-4877. [PMID: 38700115 DOI: 10.1039/d4sm00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Jet drops resulting from bubble bursting at a liquid surface play a key role in various mass transfer processes across the interface, including sea spray aerosol generation and pathogen transmission. However, the impact of structurally compound interfaces, characterized by complex surface rheology introduced by surface-active contaminants, on the jet drop ejection still remains unclear. Here, we experimentally investigate the influence of surface viscoelasticity on the size and velocity of the top jet drops from surface bubble bursting, examining both pure protein and mixed protein-surfactant solutions. We document that for bubble bursting at a pure-protein-laden surface where surface elasticity dominates, the increase in Ec, i.e. the interfacial elastocapillary number as the ratio between the effects of interfacial elasticity and capillarity, efficiently increases the radius and decreases the velocity of the top jet drop, ultimately inhibiting the jet drop ejection. On the other hand, considering the mixed protein-surfactant solution, we show that the top jet drop radius and velocity exhibit a different variation trend with Ec, which is attributed to the additional dissipation on the capillary waves as well as the retardation and resistance on the converging flow for jet formation from surface viscoelasticity. Our work may advance the understanding of bubble bursting dynamics at contaminated liquid surfaces and shed light on the potential influence of surface viscoelasticity on the generation of bubble bursting aerosols.
Collapse
Affiliation(s)
- Zhengyu Yang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Sainath Barbhai
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Bingqiang Ji
- School of Astronautics, Beihang University, Beijing 100191, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Hong Y, Zhu L, Zhang B, Wang Z, Zhang Y, Xu B, Yang R, Wang H, Wang C, Zhou G, Chen Y, Li J, He W. Fabrication of an Optoplasmonic Raft with Improved SERS Performance Detecting Methamphetamine through Bubble Enrichment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5245-5254. [PMID: 38239067 DOI: 10.1021/acsami.3c15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In this work, a novel raft-like structure that combines noble metal nanoparticles (NPs) with an interconnected layer of hemispherical dielectric shell was fabricated and characterized. It was discovered that this hybrid material can enhance the optoplasmonic interaction between plasmonic and dielectric components, thereby improving the sensing performance in surface-enhanced Raman spectroscopy (SERS). Varied geometric parameters of the fabricated optoplasmonic raft, including the inner diameter and thickness of the dielectric shell, were attempted and analyzed through numerical simulation and experimental SERS measurements. With particular size, thickness, and incident orientation, the silica shell focuses the incident optical flow into the deposited silver NPs, undergoing similar near-field focusing behavior in comparison with other optoplasmonic entities. This optoplasmonic raft floating on the water surface is able to harvest the target molecules effectively through bubble enrichment, which rapidly captures and concentrates analytes from the aqueous phase. With a limited sampling time, the sensing performance of the developed optoplasmonic raft is improved by applying the optimized parameters involved in bubble enrichment. The substrates and corresponding enrichment method were implemented in the detection of methamphetamine (METH), achieving a limit of detection (LOD) down to 0.035 nM. As for practical onsite detection, the developed substrate and bubbling strategy were applied in an assembled set, employing a portable Raman spectrometer and an air pump. This set is able to detect METH dissolved in regular commercial beer, which is quite competent in the investigation of drug abuse.
Collapse
Affiliation(s)
- Yan Hong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Leixia Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Binbin Zhang
- Beijing Spacecraft, China Academy of Space Technology, Beijing 100094, China
| | - Zehua Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yating Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu 610206, China
| | - Rongji Yang
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu 610206, China
| | - Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chong Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoyun Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuanming Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiujuan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Bomin Electronics Co., Ltd, 514000 Meizhou, China
| | - Wei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Chen M, Xing Y, Kong J, Wang D, Lu Y. Bubble manipulates the release of viral aerosols in aeration. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132534. [PMID: 37741211 DOI: 10.1016/j.jhazmat.2023.132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Bubble bursting is a common phenomenon in many industrial and natural processes, plays an important role in mediating mass transfer across the water-air interface. But the interplay between bubbles and pathogens remains unclear and the mechanisms of virus aerosolization by the bubble properties have not been well studied. The main objective of this study was to evaluate the water-to-air transfer of viruses by bubbles of different sizes. Unlike the dominant view of smaller bubbles less bioaerosols, it was found that the smaller bubbles could generate significantly more viral aerosols regardless of the virus species (Phi6, MS2, PhiX174, and T7), when the Sauter mean bubble diameters were between 0.56 and 1.65 mm under constant aeration flow rate. The mechanism studies denied the possibilities of more aerosols or better dispersion of viruses in the aerosols generated by the smaller bubbles. However, deeper bubbling could transfer more viruses to the air for MS2, PhiX174, and T7. Their concentrations in aerosols were linearly related to the bubbling depth for these non-enveloped viruses, which demonstrates the bubble-scavenging effect as a main mechanism except for the enveloped virus Phi6. Whereas, unlike these three non-enveloped viruses, Phi6 could survive relatively better in the aerosols generated from the smaller bubbles, though the enhancement of aerosolization by the smaller bubbles was much larger than the improvement of survival. Other mechanisms still remain unknown for this enveloped virus. This study suggests that the attempt of decreasing the bubble size in aeration tank of the wastewater treatment plant might significantly increase the solubility of oxygen as well as the risk of viral aerosols.
Collapse
Affiliation(s)
- Menghao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingying Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Shaw DB, Li Q, Nunes JK, Deike L. Ocean emission of microplastic. PNAS NEXUS 2023; 2:pgad296. [PMID: 37795272 PMCID: PMC10547021 DOI: 10.1093/pnasnexus/pgad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Microplastics are globally ubiquitous in marine environments, and their concentration is expected to continue rising at significant rates as a result of human activity. They present a major ecological problem with well-documented environmental harm. Sea spray from bubble bursting can transport salt and biological material from the ocean into the atmosphere, and there is a need to quantify the amount of microplastic that can be emitted from the ocean by this mechanism. We present a mechanistic study of bursting bubbles transporting microplastics. We demonstrate and quantify that jet drops are efficient at emitting microplastics up to 280 μ m in diameter and are thus expected to dominate the emitted mass of microplastic. The results are integrated to provide a global microplastic emission model which depends on bubble scavenging and bursting physics; local wind and sea state; and oceanic microplastic concentration. We test multiple possible microplastic concentration maps to find annual emissions ranging from 0.02 to 7.4-with a best guess of 0.1-mega metric tons per year and demonstrate that while we significantly reduce the uncertainty associated with the bursting physics, the limited knowledge and measurements on the mass concentration and size distribution of microplastic at the ocean surface leaves large uncertainties on the amount of microplastic ejected.
Collapse
Affiliation(s)
- Daniel B Shaw
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Qi Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Janine K Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Luc Deike
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Ji B, Yang Z, Wang Z, Ewoldt RH, Feng J. Secondary Bubble Entrainment via Primary Bubble Bursting at a Viscoelastic Surface. PHYSICAL REVIEW LETTERS 2023; 131:104002. [PMID: 37739356 DOI: 10.1103/physrevlett.131.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/24/2023]
Abstract
Bubble bursting at liquid surfaces is ubiquitous and plays a key role for the mass transfer across interfaces, impacting global climate and human health. Here, we document an unexpected phenomenon that when a bubble bursts at a viscoelastic surface of a bovine serum albumin solution, a secondary (daughter) bubble is entrapped with no subsequent jet drop ejection, contrary to the counterpart experimentally observed at a Newtonian surface. We show that the strong surface dilatational elastic stress from the viscoelastic surface retards the cavity collapse and efficiently damps out the precursor waves, thus facilitating the dominant wave focusing above the cavity nadir. The onset of daughter bubble entrainment is well predicted by an interfacial elastocapillary number comparing the effects of surface dilatational elasticity and surface tension. Our Letter highlights the important role of surface rheology on free surface flows and may find important implications in bubble dynamics with a contaminated interface exhibiting complex surface rheology.
Collapse
Affiliation(s)
- Bingqiang Ji
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zhengyu Yang
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zirui Wang
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Randy H Ewoldt
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jie Feng
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Dubitsky L, McRae O, Bird JC. Enrichment of Scavenged Particles in Jet Drops Determined by Bubble Size and Particle Position. PHYSICAL REVIEW LETTERS 2023; 130:054001. [PMID: 36800466 DOI: 10.1103/physrevlett.130.054001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
When small bubbles rupture in a contaminated water source, the resulting liquid jet breaks up into droplets that can aerosolize solid particulates such as bacteria, viruses, and microplastics. Particles collected on the bubble surface have the potential to become highly concentrated in the jet drops, dramatically increasing their impact. It has been assumed that only particles small enough to fit within a thin microlayer surrounding the bubble can be transported into its influential top jet drop. Yet here, we demonstrate that not only can larger particles be transported into this jet drop, but also that these particles can exceed previous enrichment measurements. Through experiments and simulations, we identify the prerupture location of the liquid that develops into the top jet drop and model how interfacial rearrangement combines with the bubble size, particle size, and the angular distribution of particles on the bubble surface to set the particle enrichment.
Collapse
Affiliation(s)
- Lena Dubitsky
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Oliver McRae
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - James C Bird
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Chu B, Fu B, Dong L, Cheng W, Wang R, Zheng F, Fang C, Tao P, Song C, Shang W, Deng T. A Graphene Quantum Dot Film with a Nanoengineered Crack-Like Surface via Bubble-Induced Self-Assembly for High-Power Thermal Energy Management Applications. NANO LETTERS 2023; 23:259-266. [PMID: 36542060 DOI: 10.1021/acs.nanolett.2c04254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Films with micro/nanostructures that show high wicking performance are promising in water desalination, atmospheric water harvesting, and thermal energy management systems. Here, we use a facile bubble-induced self-assembly method to directly generate films with a nanoengineered crack-like surface on the substrate during bubble growth when self-dispersible graphene quantum dot (GQD) nanofluid is used as the working medium. The crack-like micro/nanostructure, which is generated due to the thermal stress, enables the GQD film to not only have superior capillary wicking performance but also provide many additional nucleation sites. The film demonstrates enhanced phase change-based heat transfer performance, with a simultaneous enhancement of the critical heat flux and heat transfer coefficient up to 169% and 135% over a smooth substrate, respectively. Additionally, the GQD film with high stability enables a performance improvement in the concentration ratio and electrical efficiency of concentrated photovoltaics in an analytical study, which is promising for high-power thermal energy management applications.
Collapse
Affiliation(s)
- Ben Chu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lining Dong
- Shanghai Institute of Satellite Engineering, Shanghai 200240, People's Republic of China
| | - Weizheng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruitong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Feiyu Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Cheng Fang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|