1
|
Gao S, Huang X, Zhang X, Yuan Z, Chen H, Li Z, El-Mesery HS, Shi J, Zou X. Empowering protein single-molecule sequencing: nanopore technology toward sensing gene sequences. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3902-3924. [PMID: 40331275 DOI: 10.1039/d5ay00572h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The investigation of proteins at the single-molecule level is urgent to reveal the relationship between their structure and function. Unlike traditional techniques for attaining the overall average effect of group systems, nanopore sensing mode can provide information on the characteristics of proteins at the single-molecule level. Assisting with the intensity, frequency, and period of current changes, nanopore sequencing technology is rapidly advancing due to its merits, including fast readout, high accuracy, low cost, and portability. In particular, the single-molecule nanopore sequencing mode enables in-depth studies of DNA-protein interactions, protein conformation, DNA sequencing, and microbial assay, including genome sequencing of new species. This review summarizes the sensing mechanisms of nanopore sequencing technology in DNA damage, DNA methylation, RNA sequencing, and protein post-translational modifications and unfolding, covering both biological and solid-state nanopores. Due to these significant advantages, nanopore sequencing provides new insights into complex biological processes and enables more precise real-time monitoring of molecular changes. Its applications extend to clinical diagnostics, environmental monitoring, food safety, and forensic analysis. Moreover, the review outlines the present challenges faced by nanopore sequencing patterns, such as the choice of raw reagents and the design of special construction, offering a deep understanding of nanoporous single-molecule sensing toward protein sequence information and structure prediction.
Collapse
Affiliation(s)
- Shujie Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- Faculty of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhecong Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Haili Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
2
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Tian R, Ma W, Wang L, Xie W, Wang Y, Yin Y, Weng T, He S, Fang S, Liang L, Wang L, Wang D, Bai J. The combination of DNA nanostructures and materials for highly sensitive electrochemical detection. Bioelectrochemistry 2024; 157:108651. [PMID: 38281367 DOI: 10.1016/j.bioelechem.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Due to the wide range of electrochemical devices available, DNA nanostructures and material-based technologies have been greatly broadened. They have been actively used to create a variety of beautiful nanostructures owing to their unmatched programmability. Currently, a variety of electrochemical devices have been used for rapid sensing of biomolecules and other diagnostic applications. Here, we provide a brief overview of recent advances in DNA-based biomolecular assays. Biosensing platform such as electrochemical biosensor, nanopore biosensor, and field-effect transistor biosensors (FET), which are equipped with aptamer, DNA walker, DNAzyme, DNA origami, and nanomaterials, has been developed for amplification detection. Under the optimal conditions, the proposed biosensor has good amplification detection performance. Further, we discussed the challenges of detection strategies in clinical applications and offered the prospect of this field.
Collapse
Affiliation(s)
- Rong Tian
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Wenhao Ma
- Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Lue Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Xie
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Yunjiao Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Yajie Yin
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Ting Weng
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Shixuan He
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Shaoxi Fang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Liyuan Liang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Liang Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Deqiang Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Jingwei Bai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
4
|
Xie W, He S, Fang S, Yin B, Tian R, Wang Y, Wang D. Analysis of starch dissolved in ionic liquid by glass nanopore at single molecular level. Int J Biol Macromol 2023; 239:124271. [PMID: 37019197 DOI: 10.1016/j.ijbiomac.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
In this paper, the glass nanopore technology was proposed to detect a single molecule of starch dissolved in ionic liquid [1-butyl-3-methylimidazolium chloride (BmimCl)]. Firstly, the influence of BmimCl on nanopore detection is discussed. It is found that a certain amount of strong polar ionic liquids will disturb the charge distribution in nanopores and increase the detection noise. Then, by analysis of the characteristic current signal of the conical nanopore, the motion behaviour of starch near the entrance of the nanopore was studied and analysis the dominant ion of starch in the BmimCl dissolution process. Finally, based on nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy simply discussed the mechanism of amylose and amylopectin dissolved in BmimCl. These results confirm that branched chain structure would affect the dissolution of polysaccharides in ionic liquids and the contribution of anions to the dissolution of polysaccharides are dominant. It is further proved that the current signal can be used to judge the charge and structure information of the analyte, and the dissolution mechanism can be assist analyzed at the single molecule level.
Collapse
|
5
|
Song Z, Liang Y, Yang J. Nanopore Detection Assisted DNA Information Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183135. [PMID: 36144924 PMCID: PMC9504103 DOI: 10.3390/nano12183135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.
Collapse
Affiliation(s)
- Zichen Song
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuan Liang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|