1
|
Song Y, Chen K, Chen S, Zhang L, Wang Y, Wu K, Xu C, Li B, Zhang J, Liu G, Sun J. Stretchable and adhesive bilayers for electrical interfacing. MATERIALS HORIZONS 2025; 12:1981-1991. [PMID: 39744932 DOI: 10.1039/d4mh01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes. This interface configuration features a nanoscale styrene-ethylene-butylene-styrene (SEBS) elastomer layer and a SEBS-liquid metal (LM) composite layer. The top SEBS layer enables a strong adhesion with different modules. The connections between soft-soft and soft-rigid modules can be stretched to high strains of 400% and 250%, respectively. Coupling electron tunneling through an ultrathin SEBS layer with LM particle networks in a SEBS-LM composite layer renders continuous pathways for electrical conductivity. Such a bilayer interface exhibits a strain-insensitive high conductivity (3.7 × 105 S m-1) over a wide strain range from 0 to 680%, which can be facilely fabricated in a self-organized manner by sedimentation of LM particles. We present a proof-of-concept demonstration of this bilayer interface as an electrode, interconnect, and self-solder for monitoring physiological signals.
Collapse
Affiliation(s)
- Yuli Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Shimeng Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Linyuan Zhang
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Canhua Xu
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
2
|
Li J, Dai Q, Wang Z, Yi Y, Shen Y, Yao Z, Niu S, Han Z, Ren L. Highly Robust and Self-Adhesive Soft Strain Gauge via Interface Design Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406432. [PMID: 39081104 DOI: 10.1002/adma.202406432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Indexed: 10/04/2024]
Abstract
Highly robust soft strain gauges are rapidly emerging as a promising candidate in the fields of vital signs and machine conditions monitoring. However, it is still a key challenge to achieve high-performance strain sensing in these sensors with mechanical/electrical robustness for long-term usage. The multilayer structural design of sensors enhances sensing performance while the interfacial connection of heterogeneous materials between different layers is weak. Herein, inspired by the efficient perception mechanism of scorpion slit sensilla with tough interface interconnections, the synergy of ultra-high electrical performance and mechanical robustness is successfully achieved via interface design engineering. The developed multilayer soft strain gauge (MSSG) exhibits a strain sensitivity beyond 105, a lower detection limit of 8.3 µm, a frequency resolution within 0.1 Hz, and cyclic stability over 63 000 strain cycles. Also, the tough interface improves the level of heterogeneous integration in the MSSG which allows to endure different stresses. Furthermore, an MSSG-based wireless strain monitoring system is developed that enables applications on different complex dynamic surfaces, including accurate identification of human throat activity and monitoring of rolling bearing conditions.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Qingqing Dai
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Yan Shen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhongwen Yao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| |
Collapse
|
3
|
Li H, Feng D, Guo Q, Lu S, Ma Z, Wang C, Li J, Chen R, Lin X, Zhong S, Yang Y, Yuan Z, Zhang Z, Chen X. Interfacial Wrinkling Structures Based on a Double Cross-Linking Strategy Enable a Dual-Mode Optical Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43006-43015. [PMID: 39086278 DOI: 10.1021/acsami.4c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface wrinkling structures based on a bilayer system are widely employed in storing and encrypting specific optical information. However, constructing a stable wrinkling structure with high-level security remains an extensive challenge due to the delamination issue between the skin layer and the substrate. Herein, a double cross-linking strategy is introduced between a hydrogel layer doped with fluorescent molecules and polydimethylsiloxane to establish a stable interfacial wrinkling structure with dual-mode functionality, in which the light reflection of the wrinkles and fluorescence intensity of fluorescent molecules can be simultaneously regulated by the modulus ratio between the two layers. The spontaneous wrinkling structures with a physically unclonable function can enhance the photoluminescence emission intensity of the wrinkling area under ultraviolet radiation. Meanwhile, the skin layer constructed of acrylamide and acrylic acid copolymer protects the interfacial wrinkling patterns from the loss of a detailed structure for authentication due to external damage. The stable interfacial wrinkling structures with fluorescence can find potential applications in the fields of information storage and encryption.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Dengchong Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Guo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaolin Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zetong Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Cheng Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Jing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Rui Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Shilong Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Yuzhao Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zhongke Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zishou Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
4
|
Liu B, Lan B, Shi L, Cheng Y, Sun J, Wang R. Batch Fabrication of Flexible Strain Sensors with High Linearity and Low Hysteresis for Health Monitoring and Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36821-36831. [PMID: 38953185 DOI: 10.1021/acsami.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, flexible strain sensors have gradually come into our lives due to their superiority in the field of biomonitoring. However, these sensors still suffer from poor durability, high hysteresis, and difficulty in calibration, resulting in great hindrance of practical application. Herein, starting with interfacial interaction regulation and structure-induced cracking, flexible strain sensors with high performance are successfully fabricated. In this strategy, dopamine treatment is used to enhance the bonding between flexible substrates and carbon nanotubes (CNT). The combination within the conductive networks is then controlled by substituting the CNT type. Braid-like fibers are employed to achieve controllable expansion of the conductive layer cracks. Finally, we obtain strain sensors that possess high linearity (R2 = 0.997) with low hysteresis (5%), high sensitivity (GF = 60) and wide sensing range (0-50%), short response time (62 ms), outstanding stability, and repeatability (>10,000 cycles). Flexible strain sensors with all performances good are rarely reported. Static and dynamic respiration and pulse signal monitoring by the fiber sensor are demonstrated. Moreover, a knee joint monitoring system is constructed for the monitoring of various walking stances, which is of great value to the diagnosis and rehabilitation of many diseases.
Collapse
Affiliation(s)
- Boyang Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Binxu Lan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Liangjing Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Yin Cheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jing Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Ranran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
5
|
Hu T, Sheng B. A Highly Sensitive Strain Sensor with Wide Linear Sensing Range Prepared on a Hybrid-Structured CNT/Ecoflex Film via Local Regulation of Strain Distribution. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603806 DOI: 10.1021/acsami.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
With the development of information technology, high-performance wearable strain sensors with high sensitivity and stretchability have played a significant role in motion detection. However, many high-sensitivity and outstanding-stretchability strain sensors possess a limited linear sensing range, which limits the enhancement of the flexible strain sensors' performance. Herein, we develop a hybrid-structured carbon nanotube (CNT)/Ecoflex strain sensor with laser-engraved grooves along with punched circular holes in a composite CNT/Ecoflex film by vacuum filtration and permeation. By optimizing the distribution of grooves and circular holes, the strain in the sensing layer can be locally regulated, which alters the morphology of cracks under strain and allows the hybrid-structured CNT/Ecoflex strain sensor to simultaneously exhibit high sensitivity (GF = 43.8) as well as a wide linear sensing range (200%). On the basis of excellent performance, the hybrid-structured CNT/Ecoflex strain sensor is capable of detecting movements in various parts of the human body, including movements of larynx and joint bending.
Collapse
Affiliation(s)
- Tao Hu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
6
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Chen J, Chen K, Jin J, Wu K, Wang Y, Zhang J, Liu G, Sun J. Outstanding Synergy of Sensitivity and Linear Range Enabled by Multigradient Architectures. NANO LETTERS 2023; 23:11958-11967. [PMID: 38090798 DOI: 10.1021/acs.nanolett.3c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Flexible pressure sensors are devices that mimic the sensory capabilities of natural human skin and enable robots to perceive external stimuli. One of the main challenges is maintaining high sensitivity over a broad linear pressure range due to poor structural compressibility. Here, we report a flexible pressure sensor with an ultrahigh sensitivity of 153.3 kPa-1 and linear response over an unprecedentedly broad pressure range from 0.0005 to 1300 kPa based on interdigital-shaped, multigradient architectures, featuring modulus, conductivity, and microstructure gradients. Such multigradient architectures and interdigital-shaped configurations enable effective stress transfer and conductivity regulation, evading the pressure sensitivity-linear range trade-off dilemma. Together with high pressure resolution, high frequency response, and good reproducibility over the ultrabroad linear range, proof-of-concept applications such as acoustic wave detection, high-resolution pressure measurement, and healthcare monitoring in diverse scenarios are demonstrated.
Collapse
Affiliation(s)
- Jiaorui Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jiaqi Jin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
8
|
Zhu T, Wu K, Wang Y, Zhang J, Liu G, Sun J. Highly stable and strain-insensitive metal film conductors via manipulating strain distribution. MATERIALS HORIZONS 2023; 10:5920-5930. [PMID: 37873924 DOI: 10.1039/d3mh01399e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Metal film-based stretchable conductors are essential elements of flexible electronics for wearable, biomedical, and robotic applications, which require strain-insensitive high conductivity over a wide strain range and excellent cyclic stability. However, they suffer from serious electrical failure under monotonic and cyclic tensile loading at a small strain due to the uncontrolled film cracking behavior. Here, we propose a novel in-plane crack control strategy of engineering hierarchical microstructures to achieve outstanding electromechanical performance via harnessing the strain distribution in metal films. The wrinkles delay the crack initiation at undercuts which should be the most vulnerable sites during the stretching process. The surface protrusions/grooves/undercuts inhibit the crack propagation because of the effective strain redistribution. In addition, hierarchical microstructures significantly improve cyclic stability due to the strong interfacial adhesion and stable crack patterns. The metal film-based conductors exhibit ultrahigh strain-insensitive conductivity (1.7 × 107 S m-1), negligible resistance change (ΔR/R0 = 0.007) over an ultra-wide strain range (>200%), and excellent cyclic strain durability (>15 000 cycles at 100% strain). A range of metal films was explored to establish the universality of this strategy, including ductile copper and silver, as well as brittle molybdenum and high entropy alloy. We demonstrate the strain-insensitive electrical functionality of a metal film-based conductor in a flexible light-emitting diode circuit.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
9
|
Xu Y, Chen M, Yu S, Zhou H. High-performance flexible strain sensors based on silver film wrinkles modulated by liquid PDMS substrates. RSC Adv 2023; 13:33697-33706. [PMID: 38020005 PMCID: PMC10654890 DOI: 10.1039/d3ra06020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Flexible strain sensors based on controllable surface microstructures in film-substrate systems can be extensively applied in high-tech fields such as human-machine interfaces, electronic skins, and soft robots. However, the rigid functional films are susceptible to structural destruction and interfacial failure under large strains or high loading speeds, limiting the stability and durability of the sensors. Here we report on a facile technique to prepare high-performance flexible strain sensors based on controllable wrinkles by depositing silver films on liquid polydimethylsiloxane (PDMS) substrates. The silver atoms can penetrate into the surface of liquid PDMS to form an interlocking layer during deposition, enhancing the interfacial adhesion greatly. After deposition, the liquid PDMS is spontaneously solidified to stabilize the film microstructures. The surface patterns are well modulated by changing film thickness, prepolymer-to-crosslinker ratio of liquid PDMS, and strain value. The flexible strain sensors based on the silver film/liquid PDMS system show high sensitivity (above 4000), wide sensing range (∼80%), quick response speed (∼80 ms), and good stability (above 6000 cycles), and have a broad application prospect in the fields of health monitoring and motion tracking.
Collapse
Affiliation(s)
- Yifan Xu
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| | - Miaogen Chen
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Hong Zhou
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| |
Collapse
|
10
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
11
|
Wang T, Qiu Z, Li H, Lu H, Gu Y, Zhu S, Liu GS, Yang BR. High Sensitivity, Wide Linear-Range Strain Sensor Based on MXene/AgNW Composite Film with Hierarchical Microcrack. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304033. [PMID: 37649175 DOI: 10.1002/smll.202304033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiguang Qiu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haichuan Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Hao Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Simu Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Bakhchova L, Deckert L, Steinmann U. Wrinkled Thermo-Electric Meander-Shaped Element on a Thin Freestanding PDMS Membrane. MEMBRANES 2023; 13:membranes13050508. [PMID: 37233569 DOI: 10.3390/membranes13050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Natural wrinkling of metal films on silicone substrates can appear by means of the metal sputtering process and can be described by the continuous elastic theory and non-linear wrinkling model. Here, we report the fabrication technology and behavior of thin freestanding Polydimethylsiloxane (PDMS) membranes equipped with thermo-electric meander-shaped elements. The Cr/Au wires were obtained on the silicone substrate by magnetron sputtering. We observe wrinkle formation and suppose furrows appear once PDMS returns to its initial state after the thermo-mechanical expansion during sputtering. Although the substrate thickness is usually a negligible parameter in the theory of wrinkle formation, we found that the self-assembled wrinkling architecture of the PDMS/Cr/Au varies due to the membrane thickness of 20 µm and 40 µm PDMS. We also demonstrate that the wrinkling of the meander wire affects its length, and it causes a 2.7 times higher resistance compared to a calculated value. Therefore, we investigate the influence of the PDMS mixing ratio on the thermo-electric meander-shaped elements. For the stiffer PDMS with a mixing ratio of 10:4, the resistance due to wrinkle amplitude alterations is 25% higher compared to the PDMS of ratio 10:1. Additionally, we observe and describe a thermo-mechanically induced motion behavior of the meander wires on completely freestanding PDMS membrane under applied current. These results can improve the understanding of wrinkle formation, which influences thermo-electric characteristics and may promote the integration of this technology in applications.
Collapse
Affiliation(s)
- Liubov Bakhchova
- Institute for Automation Technology, Faculty of Electro Engineering and Information Technology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Liudmila Deckert
- Institute for Automation Technology, Faculty of Electro Engineering and Information Technology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Ulrike Steinmann
- Institute for Automation Technology, Faculty of Electro Engineering and Information Technology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
13
|
Kim S, Das B, Ji KH, Moghaddam MH, Chen C, Cha J, Namgung S, Lee D, Kim DS. Defining the zerogap: cracking along the photolithographically defined Au-Cu-Au lines with sub-nanometer precision. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1481-1489. [PMID: 39634595 PMCID: PMC11501696 DOI: 10.1515/nanoph-2022-0680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 12/07/2024]
Abstract
Cracks are formed along the photolithographically pre-determined lines with extremely high yield and repeatability, when Cu clusters are introduced between planarized Au thin films sequentially deposited on a PET substrate. These clusters act as nanometer-sized spacers preventing the formation of contiguous metallic bond between the adjacent Au layers which will render prepatterned-cracking impossible. While the effective gap width is initially zero in the optical sense from microwaves all the way to the visible, outer-bending the PET substrate allows the gap width tuning into the 100 nm range, with the stability and controllability in the ranges of 100 s and Angstrom-scale, respectively. It is anticipated that our wafer-scale prepatterned crack technology with an unprecedented mixture of macroscopic length and Angstrom-scale controllability will open-up many applications in optoelectronics, quantum photonics and photocatalysis.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Bamadev Das
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Kang Hyeon Ji
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Mahsa Haddadi Moghaddam
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Cheng Chen
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Jongjin Cha
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Seon Namgung
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Dukhyung Lee
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
| | - Dai-Sik Kim
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea; and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Physics, Chung-Ang University, Seoul, South Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Korea
| |
Collapse
|