1
|
Han JY, Kim K, Lee C, Yoon DK. Controlled Mesoscopic Growth of Polymeric Fibers Using Liquid Crystal Template. Macromol Rapid Commun 2025; 46:e2300303. [PMID: 37464964 DOI: 10.1002/marc.202300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Orientation-controlled polymeric fiber is one of the most exciting research topics to rationalize the multifunctionality for various applications. In order to realize this goal, the growth of polymeric fibers should be controlled using various techniques like extrusion, molding, drawing, and self-assembly. Among the various candidates to fabricate the orientation-controlled polymeric fibers, the template-assisted assembly guided by a liquid crystal (LC) matrix is the most promising because the template can be manipulated easily with various methods like surface anchoring, rubbing, geometric confinement, and electric field. This review introduces the recent progress toward the directed growth of polymeric fibers using the LC template. Three representative LC-templated polymerization techniques to fabricate fibers include chemical or physical polymerization from the monomers mixed in LC matrix, patterned fibers formed from LC-templated reactive mesogens, and orientation-controlled nanofibers by infiltrating vaporized monomers between LC molecules. The orientation-controlled polymeric fibers will be used in electro-optical switching tools, tunable hydrophilic or hydrophobic surfaces, and control of phosphorescence, which can open a way to design, fabricate, and modulate nano- to micron-scale fibers with various functions on demand.
Collapse
Affiliation(s)
- Jeong Yeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyuhwan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Wang X, Jiang J, Chen J, Asilehan Z, Tang W, Peng C, Zhang R. Moiré effect enables versatile design of topological defects in nematic liquid crystals. Nat Commun 2024; 15:1655. [PMID: 38409234 PMCID: PMC10897219 DOI: 10.1038/s41467-024-45529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recent advances in surface-patterning techniques of liquid crystals have enabled the precise creation of topological defects, which promise a variety of emergent applications. However, the manipulation and application of these defects remain limited. Here, we harness the moiré effect to engineer topological defects in patterned nematic liquid crystal cells. Specifically, we combine simulation and experiment to examine a nematic cell confined between two substrates of periodic surface anchoring patterns; by rotating one surface against the other, we observe a rich variety of highly tunable, novel topological defects. These defects are shown to guide the three-dimensional self-assembly of colloids, which can conversely impact defects by preventing the self-annihilation of loop-defects through jamming. Finally, we demonstrate that certain nematic moiré cells can engender arbitrary shapes represented by defect regions. As such, the proposed simple twist method enables the design and tuning of mesoscopic structures in liquid crystals, facilitating applications including defect-directed self-assembly, material transport, micro-reactors, photonic devices, and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Juan Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN, 38152, USA
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|