1
|
Gastellu N, Madanchi A, Simine L. Disentangling Morphology and Conductance in Amorphous Graphene. J Phys Chem Lett 2025; 16:4522-4528. [PMID: 40298244 DOI: 10.1021/acs.jpclett.5c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Amorphous graphene or amorphous monolayer carbon (AMC) is a family of carbon films that exhibit a surprising sensitivity of electronic conductance to morphology. We combine deep learning-enhanced simulation techniques with percolation theory to analyze three morphologically distinct mesoscale AMCs. Our approach avoids the pitfalls of applying periodic boundary conditions to these fundamentally aperiodic systems or equating crystalline inclusions with conducting sites. We reproduce the previously reported dependence of charge conductance on morphology and explore the limitations of partial morphology descriptors in witnessing conductance properties. Finally, we perform crystallinity analysis of conductance networks along the electronic energy spectrum and show that they metamorphose from being localized on crystallites at band edges to localized on defects around the Fermi energy opening the possibility of control through gate voltage.
Collapse
Affiliation(s)
- Nicolas Gastellu
- Department of Chemistry, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Ata Madanchi
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Lena Simine
- Department of Chemistry, McGill University, Montréal, Québec H3A 0C7, Canada
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| |
Collapse
|
2
|
Sattari-Esfahlan SM, Mirzaei S, Josline MJ, Moon JY, Hyun SH, Jang H, Lee JH. Amorphous boron nitride: synthesis, properties and device application. NANO CONVERGENCE 2025; 12:22. [PMID: 40314909 PMCID: PMC12048386 DOI: 10.1186/s40580-025-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.
Collapse
Affiliation(s)
| | - Saeed Mirzaei
- CEITEC BUT, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
- Fraunhofer Institute for Material and Beam Technology, WinterbergstraBe 28, E01277, Dresden, Germany
| | | | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sang-Hwa Hyun
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Houk Jang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| | - Jae-Hyun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117575, Singapore.
| |
Collapse
|
3
|
Dos Santos EJA, Pereira ML, Tromer RM, Galvão DS, Ribeiro LA. Exploring the electronic and mechanical properties of the recently synthesized nitrogen-doped amorphous monolayer carbon. NANOSCALE 2025; 17:7253-7263. [PMID: 39686875 DOI: 10.1039/d4nr04305g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The recent synthesis of nitrogen-doped amorphous monolayer carbon (NAMC) opens new possibilities for multifunctional materials. In this study, we have investigated the nitrogen doping limits and their effects on NAMC's structural and electronic properties using density functional-based tight-binding simulations. Our results show that NAMC remains stable up to 35% nitrogen doping, beyond which the lattice becomes unstable. The formation energies of NAMC are higher than those of nitrogen-doped graphene for all the cases we have investigated. Both undoped MAC and NAMC exhibit metallic behavior, although only MAC features a Dirac-like cone. MAC has an estimated Young's modulus value of about 410 GPa, while NAMC's modulus can vary around 416 GPa depending on nitrogen content. MAC displays optical activity in the ultraviolet range, whereas NAMC features light absorption within the infrared and visible ranges, suggesting potential for distinct optoelectronic applications. Their structural thermal stabilities were addressed through molecular dynamics simulations. MAC melts at approximately 4900 K, while NAMC loses its structural integrity for temperatures ranging from 300 K to 3300 K, lower than graphene. These results point to potential NAMC applications in flexible electronics and optoelectronics.
Collapse
Affiliation(s)
- Emanuel J A Dos Santos
- University of Brasília, Institute of Physics, Brasília, Federal District, Brazil
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, Brazil
| | - Marcelo L Pereira
- University of Brasília, College of Technology, Department of Electrical Engineering, Brasília, Federal District, Brazil.
| | - Raphael M Tromer
- School of Engineering, MackGraphe, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Douglas S Galvão
- Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Luiz A Ribeiro
- University of Brasília, Institute of Physics, Brasília, Federal District, Brazil
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Propst D, Joudi W, Längle M, Madsen J, Kofler C, Mayer BM, Lamprecht D, Mangler C, Filipovic L, Susi T, Kotakoski J. Automated image acquisition and analysis of graphene and hexagonal boron nitride from pristine to highly defective and amorphous structures. Sci Rep 2024; 14:26939. [PMID: 39506053 PMCID: PMC11541565 DOI: 10.1038/s41598-024-77740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Defect-engineered and even amorphous two-dimensional (2D) materials have recently gained interest due to properties that differ from their pristine counterparts. Since these properties are highly sensitive to the exact atomic structure, it is crucial to be able to characterize them at atomic resolution over large areas. This is only possible when the imaging process is automated to reduce the time spent on manual imaging, which at the same time reduces the observer bias in selecting the imaged areas. Since the necessary datasets include at least hundreds if not thousands of images, the analysis process similarly needs to be automated. Here, we introduce disorder into graphene and monolayer hexagonal boron nitride (hBN) using low-energy argon ion irradiation, and characterize the resulting disordered structures using automated scanning transmission electron microscopy annular dark field imaging combined with convolutional neural network-based analysis techniques. We show that disorder manifests in these materials in a markedly different way, where graphene accommodates vacancy-type defects by transforming hexagonal carbon rings into other polygonal shapes, whereas in hBN the disorder is observed simply as vacant lattice sites with very little rearrangement of the remaining atoms. Correspondingly, in the case of graphene, the highest introduced disorder leads to an amorphous membrane, whereas in hBN, the highly defective lattice contains a large number of vacancies and small pores with no indication of amorphisation. Overall, our study demonstrates that combining automated imaging and image analysis is a powerful way to characterize the structure of disordered and amorphous 2D materials, while also illustrating some of the remaining shortcomings with this methodology.
Collapse
Affiliation(s)
- Diana Propst
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Wael Joudi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Manuel Längle
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Jacob Madsen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Clara Kofler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Barbara M Mayer
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - David Lamprecht
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29/E360, 1040, Vienna, Austria
| | - Clemens Mangler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Lado Filipovic
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29/E360, 1040, Vienna, Austria
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria.
| | - Jani Kotakoski
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Peng J, Zhang Z, Wang H, Zhang P, Zhao X, Jia Y, Yue Y, Li N. Amorphization of MXenes: Boosting Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308528. [PMID: 38012526 DOI: 10.1002/smll.202308528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The emergence of amorphous 2D materials has opened up new avenue for materials science and nanotechnology in the recent years. Their unique disordered structure, excellent large-area uniformity, and low fabrication cost make them important for various industrial applications. However, there have no reports on the amorphous MXene materials. In this work, the amorphous Ti2C-MXene (a-Ti2C-MXene) model is built by ab initio molecular dynamics (AIMD) approach. This model is a unique amorphous model, which is totally different from continuous random network (CRN) model for silicate glass and amorphous model for amorphous 2D BN and graphene. The structure analysis shows that the a-Ti2C-MXene composited by [Ti5C] and [Ti6C] cluster, which are surrounded by the region of mixed cluster [TixC], [Ti-Ti] cluster, and [C-C] cluster. There is a high chemical activity for hydrogen evolution reaction (HER) in a-Ti2C-MXene with |ΔGH| 0.001 eV, implying that they serve as the potential boosting HER performance. The work provides insights that can pave the way for future research on novel MXene materials, leading to their increased applications in various fields.
Collapse
Affiliation(s)
- Jiahe Peng
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, Guangdong, 518000, China
| | - Zhongyong Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, Guangdong, 518000, China
| | - Hao Wang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, Guangdong, 518000, China
| | - Peng Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Center for Topological Functional Materials, and School of Physics and Electronic, Henan University, Kaifeng, 475001, China
| | - Yuanzheng Yue
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
6
|
Lopes Lima KA, Lopes Mendonça FL, Giozza WF, de Sousa Junior RT, Ribeiro Junior LA. Insights into the DHQ-BN: mechanical, electronic, and optical properties. Sci Rep 2024; 14:2510. [PMID: 38291070 PMCID: PMC10827778 DOI: 10.1038/s41598-024-52347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Computational materials research is vital in improving our understanding of various class of materials and their properties, contributing valuable information that helps predict innovative structures and complement empirical investigations. In this context, DHQ-graphene recently emerged as a stable two-dimensional carbon allotrope composed of decagonal, hexagonal, and quadrilateral carbon rings. Here, we employ density functional theory calculations to investigate the mechanical, electronic, and optical features of its boron nitride counterpart (DHQ-BN). Our findings reveal an insulating band gap of 5.11 eV at the HSE06 level and good structural stability supported by phonon calculations and ab initio molecular dynamics simulations. Moreover, DHQ-BN exhibits strong ultraviolet (UV) activity, suggesting its potential as a highly efficient UV light absorber. Its mechanical properties, including Young's modulus (230 GPa) and Poisson's ratio (0.7), provide insight into its mechanical resilience and structural stability.
Collapse
Affiliation(s)
- K A Lopes Lima
- Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil
| | - F L Lopes Mendonça
- Department of Electrical Engineering, Faculty of Technology, University of Brasília, Brasília, Brazil
| | - W F Giozza
- Department of Electrical Engineering, Faculty of Technology, University of Brasília, Brasília, Brazil
| | - R T de Sousa Junior
- Department of Electrical Engineering, Faculty of Technology, University of Brasília, Brasília, Brazil
| | - L A Ribeiro Junior
- Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil.
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|
7
|
Santos EJA, Giozza WF, de Souza Júnior RT, Nepomuceno Cavalcante NJ, Ribeiro Júnior LA, Lopes Lima KA. On the CO
2
adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study. J Mol Model 2023; 29:327. [PMID: 37773546 DOI: 10.1007/s00894-023-05709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
CONTEXT Recent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO2 adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO2 molecules, approximately− 0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO2 adsorption, leading to adsorption energies ranging from− 0.13 to− 0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO2 sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO2 molecules suggests that the interaction between BN-BPN and CO2 cannot modify the electronic properties of BN-BPN before the CO2 molecules escape. METHODS We performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.
Collapse
Affiliation(s)
- Emanuel J A Santos
- Department of Physics, State University of Piauí, Teresina, Piauí, 64002-150, Brazil
| | - William F Giozza
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil
| | - Rafael T de Souza Júnior
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil
| | | | - Luiz A Ribeiro Júnior
- University of Brasilia, Institute of Physics, Brasília, 70910-900, Brazil.
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil.
| | - Kleuton A Lopes Lima
- Department of Physics, State University of Piauí, Teresina, Piauí, 64002-150, Brazil
| |
Collapse
|
8
|
Monteiro FF, Giozza WF, Júnior RTDS, de Oliveira Neto PH, Júnior LAR, Júnior MLP. On the mechanical, electronic, and optical properties of the boron nitride analog for the recently synthesized biphenylene network: a DFT study. J Mol Model 2023; 29:215. [PMID: 37347316 DOI: 10.1007/s00894-023-05606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
CONTEXT Recently, a new 2D carbon allotrope named biphenylene network (BPN) was experimentally realized. Here, we use density functional theory (DFT) calculations to study its boron nitride analogue sheet's structural, electronic, and optical properties (BN-BPN). Results suggest that BN-BPN has good structural and dynamic stabilities. It also has a direct bandgap of 4.5 eV and significant optical activity in the ultraviolet range. BN-BPN Young's modulus varies between 234.4[Formula: see text]273.2 GPa depending on the strain direction. METHODS Density functional theory (DFT) simulations for the electronic and optical properties of BN-BPN were performed using the CASTEP package within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) and the hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). For convenience, the mechanical properties were carried out using the DFT approach implemented in the SIESTA code, also within the scope of the GGA/PBE method. We used the double-zeta plus polarization (DZP) for the basis set in these cases. Moreover, the norm-conserving Troullier-Martins pseudopotential was employed to describe the core electrons.
Collapse
Affiliation(s)
- F F Monteiro
- Institute of Physics, University of Brasília, Brasília, Brazil
| | - W F Giozza
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil
| | - R T de Sousa Júnior
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil
| | | | | | - M L Pereira Júnior
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil.
| |
Collapse
|
9
|
Kim H, Liu Y, Lu K, Chang CS, Sung D, Akl M, Qiao K, Kim KS, Park BI, Zhu M, Suh JM, Kim J, Jeong J, Baek Y, Ji YJ, Kang S, Lee S, Han NM, Kim C, Choi C, Zhang X, Choi HK, Zhang Y, Wang H, Kong L, Afeefah NN, Ansari MNM, Park J, Lee K, Yeom GY, Kim S, Hwang J, Kong J, Bae SH, Shi Y, Hong S, Kong W, Kim J. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. NATURE NANOTECHNOLOGY 2023; 18:464-470. [PMID: 36941360 DOI: 10.1038/s41565-023-01340-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/03/2023] [Indexed: 05/21/2023]
Abstract
Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.
Collapse
Affiliation(s)
- Hyunseok Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kuangye Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Celesta S Chang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dongchul Sung
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Center, Sejong University, Seoul, Republic of Korea
| | - Marx Akl
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kuan Qiao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ki Seok Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bo-In Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Menglin Zhu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Jun Min Suh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jekyung Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junseok Jeong
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongmin Baek
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - You Jin Ji
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sangho Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ne Myo Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chansoo Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chanyeol Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeong-Kyu Choi
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Center, Sejong University, Seoul, Republic of Korea
| | - Yanming Zhang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Haozhe Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lingping Kong
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nordin Noor Afeefah
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | | | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Kyusang Lee
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
| | - Geun Young Yeom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungkyu Kim
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, Republic of Korea
| | - Jinwoo Hwang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Jing Kong
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
- Institute of Materials Science and Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Yunfeng Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Suklyun Hong
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Center, Sejong University, Seoul, Republic of Korea.
| | - Wei Kong
- Department of Materials Science and Engineering, Westlake University, Hangzhou, Zhejiang, China.
| | - Jeehwan Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Jin X, Zhang YY, Du S. Recent progress in the theoretical design of two-dimensional ferroelectric materials. FUNDAMENTAL RESEARCH 2023; 3:322-331. [PMID: 38933769 PMCID: PMC11197756 DOI: 10.1016/j.fmre.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Two-dimensional (2D) ferroelectrics (FEs), which maintain stable electric polarization in ultrathin films, are a promising class of materials for the development of various miniature functional devices. In recent years, several 2D FEs with unique properties have been successfully fabricated through experiments. They have been found to exhibit some unique properties either by themselves or when they are coupled with other functional materials (e.g., ferromagnetic materials, materials with 5d electrons, etc.). As a result, several new types of 2D FE functional devices have been developed, exhibiting excellent performance. As a type of newly discovered 2D functional material, the number of 2D FEs and the exploration of their properties are still limited and this calls for further theoretical predictions. This review summarizes recent progress in the theoretical predictions of 2D FE materials and provides strategies for the rational design of 2D FE materials. The aim of this review is to provide guidelines for the design of 2D FE materials and related functional devices.
Collapse
Affiliation(s)
- Xin Jin
- University of the Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Yang Zhang
- University of the Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixuan Du
- University of the Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
11
|
Tappertzhofen S, Braeuninger-Weimer P, Gumprich A, Chirca I, Potočnik T, Alexander-Webber JA, Hofmann S. Transfer-free graphene passivation of sub 100 nm thin Pt and Pt–Cu electrodes for memristive devices. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
AbstractMemristive switches are among the most promising building blocks for future neuromorphic computing. These devices are based on a complex interplay of redox reactions on the nanoscale. Nanoionic phenomena enable non-linear and low-power resistance transition in ultra-short programming times. However, when not controlled, the same electrochemical reactions can result in device degradation and instability over time. Two-dimensional barriers have been suggested to precisely manipulate the nanoionic processes. But fabrication-friendly integration of these materials in memristive devices is challenging.Here we report on a novel process for graphene passivation of thin platinum and platinum/copper electrodes. We also studied the level of defects of graphene after deposition of selected oxides that are relevant for memristive switching.
Collapse
|