1
|
Krasley A, Chakraborty S, Vuković L, Beyene AG. Molecular Determinants of Optical Modulation in ssDNA-Carbon Nanotube Biosensors. ACS NANO 2025; 19:7804-7820. [PMID: 39817860 PMCID: PMC11887485 DOI: 10.1021/acsnano.4c13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we combine experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA-SWCNT catecholamine sensors, the optical response correlates positively with the electron density on the aryl motif, even among ligands with similar ligand binding affinities. Importantly, despite the strong correlations with electrochemical properties, we find that catechol oxidation itself is not necessary to drive the sensor optical response. We discuss how these findings could serve as a framework for tuning the performance of existing sensors and guiding the development of new biosensors of this class.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia Research
Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sayantani Chakraborty
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Computational
Science Program and Bioinformatics Program, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Abraham G. Beyene
- Janelia Research
Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| |
Collapse
|
2
|
Alizadehmojarad AA, Bachilo SM, Weisman RB. Sequence-Dependent Surface Coverage of ssDNA Coatings on Single-Wall Carbon Nanotubes. J Phys Chem A 2024; 128:5578-5585. [PMID: 38981061 DOI: 10.1021/acs.jpca.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A combination of experimental measurements and molecular dynamics (MD) simulations was used to investigate how the surfaces of single-wall carbon nanotubes (SWCNTs) are covered by adsorbed ssDNA oligos with different base compositions and lengths. By analyzing the UV absorption spectra of ssDNA-coated SWCNTs before and after coating displacement by a transparent surfactant, the mass ratios of adsorbed ssDNA to SWCNTs were determined for poly-T, poly-C, GT-containing, and AT-containing ssDNA oligos. Based on the measured mass ratios, it is estimated that an average of 20, 22, 26, or 32 carbon atoms are covered by one adsorbed thymine, cytosine, adenine, or guanine nucleotide, respectively. In addition, the UV spectra revealed electronic interactions of varying strengths between the nucleobase aromatic rings and the nanotube π-systems. Short poly-T DNA oligos show stronger π-π stacking interactions with SWCNT surfaces than do short poly-C DNA oligos, whereas both long poly-C and poly-T DNA oligos show strong interactions. These experiments were complemented by MD computations on simulated systems that were constrained to match the measured ssDNA/SWCNT mass ratios. The surface coverages computed from the MD results varied with oligo composition in a pattern that correlates higher measured yields of nanotube fluorescence with greater surface coverage.
Collapse
Affiliation(s)
- Ali A Alizadehmojarad
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Levin N, Hendler-Neumark A, Kamber D, Bisker G. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent. J Colloid Interface Sci 2024; 664:650-666. [PMID: 38490040 DOI: 10.1016/j.jcis.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Functionalized single-walled carbon nanotubes (SWCNTs) hold immense potential for diverse biomedical applications due to their biocompatibility and optical properties, including near-infrared fluorescence. Specifically, SWCNTs have been utilized to target cells as a vehicle for drug delivery and gene therapy, and as sensors for various intracellular biomarkers. While the main internalization route of SWCNTs into cells is endocytosis, methods for enhancing the cellular uptake of SWCNTs are of great importance. In this research, we demonstrate the use of a transfecting reagent for promoting cell internalization of functionalized SWCNTs. We explore different types of SWCNT functionalization, namely single-stranded DNA (ssDNA) or polyethylene glycol (PEG)-lipids, and two different cell types, embryonic kidney cells and adenocarcinoma cells. We show that internalizing PEGylated functionalized SWCNTs is enhanced in the presence of the transfecting reagent, where the effect is more pronounced for negatively charged PEG-lipid. However, ssDNA-SWCNTs tend to form aggregates in the presence of the transfecting reagent, rendering it unsuitable for promoting internalization. For all cases, cellular uptake is visualized by near-infrared fluorescence microscopy, showing that the SWCNTs are typically localized within the lysosome. Generally, cellular internalization was higher in the adenocarcinoma cells, thereby paving new avenues for drug delivery and sensing in malignant cells.
Collapse
Affiliation(s)
- Naamah Levin
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
4
|
Lei K, Bachilo SM, Weisman RB. Diameter-Dependent Competitive Adsorption of Sodium Dodecyl Sulfate and Single-Stranded DNA on Carbon Nanotubes. J Phys Chem Lett 2023; 14:11043-11049. [PMID: 38047931 DOI: 10.1021/acs.jpclett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The equilibrium compositions of coatings on single-wall carbon nanotubes were spectroscopically deduced for samples dispersed in dilute sodium dodecyl sulfate (SDS) and then exposed to low concentrations of ssDNA oligomers. With all studied oligomers, displacement of the SDS tended to occur at lower ssDNA concentrations for smaller diameter nanotubes than for larger diameter ones. However, the behavior varied significantly with oligomer. For example, the diameter dependence was steeper for (TAT)4 than for (ATT)4, suggesting that interstrand head-to-tail hydrogen bonding interactions play a role in SWCNT wrapping. Concentrations of ssDNA in the range of several μg/mL displace SDS from nanotubes dispersed in 1500 μg/mL SDS solutions. This effect allows the use of coating exchange to prepare ssDNA dispersions with minimal oligomer costs. Another demonstrated use exploits the structure-dependent relative coating affinities in a simple filtration method for the diameter enrichment of SWCNT mixtures.
Collapse
Affiliation(s)
- Kunhua Lei
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Hendler-Neumark A, Wulf V, Bisker G. Single-Walled Carbon Nanotube Sensor Selection for the Detection of MicroRNA Biomarkers for Acute Myocardial Infarction as a Case Study. ACS Sens 2023; 8:3713-3722. [PMID: 37700465 PMCID: PMC10616859 DOI: 10.1021/acssensors.3c00633] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding short ribonucleic acid sequences that take part in many cellular and biological processes. Recent studies have shown that altered expression of miRNAs is involved in pathological processes, and they can thus be considered biomarkers for the early detection of various diseases. Here, we demonstrate a selection and elimination process of fluorescent single-walled carbon nanotube (SWCNT) sensors for miRNA biomarkers based on RNA-DNA hybridization with a complementary DNA recognition unit bound to the SWCNT surface. We use known miRNA biomarkers for acute myocardial infarction (AMI), commonly known as a heart attack, as a case study. We have selected five possible miRNA biomarkers which are selective and specific to AMI and tested DNA-SWCNT sensor candidates with the target DNA and RNA sequences in different environments. Out of these five miRNA sensors, three could recognize the complementary DNA or RNA sequence in a buffer, showing fluorescence modulation of the SWCNT in response to the target sequence. Out of the three working sensors in buffer, only one could function in serum and was selected for further testing. The chosen sensor, SWCNT-miDNA208a, showed high specificity and selectivity toward the target sequence, with better performance in serum compared to a buffer environment. The SWCNT sensor selection pipeline highlights the importance of testing sensor candidates in the appropriate environment and can be extended to other libraries of biomarkers.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|