1
|
Zaffalon ML, Fratelli A, Li Z, Bruni F, Cherniukh I, Carulli F, Meinardi F, Kovalenko MV, Manna L, Brovelli S. Ultrafast Superradiant Scintillation from Isolated Weakly Confined Perovskite Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500846. [PMID: 40116560 PMCID: PMC12051787 DOI: 10.1002/adma.202500846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Efficiency and emission rate are two traditionally conflicting parameters in radiation detection, and achieving their simultaneous maximization can significantly advance ultrafast time-of-flight (ToF) technologies. In this study, it is demonstrated that this goal is attainable by harnessing the giant oscillator strength (GOS) inherent to weakly confined perovskite nanocrystals, which enables superradiant scintillation under mildly cryogenic conditions that align seamlessly with ToF technologies. It is shown that the radiative acceleration due to GOS encompasses both single and multiple exciton dynamics arising from ionizing interactions, further enhanced by suppressed non-radiative losses and Auger recombination at 80 K. The outcome is ultrafast scintillation with 420 ps lifetime and light yield of ≈10 000 photons/MeV for diluted NC solutions, all without non-radiative losses. Temperature-dependent light-guiding experiments on test-bed nanocomposite scintillators finally indicate that the light-transport capability remains unaffected by the accumulation of band-edge oscillator strength due to GOS. These findings suggest a promising pathway toward developing ultrafast nanotechnological scintillators with optimized light output and timing performance.
Collapse
Affiliation(s)
- Matteo L. Zaffalon
- Dipartimento di Scienza dei MaterialiUniversità degli Studi di Milano Bicoccavia R. Cozzi 55Milano20125Italy
| | - Andrea Fratelli
- Dipartimento di Scienza dei MaterialiUniversità degli Studi di Milano Bicoccavia R. Cozzi 55Milano20125Italy
| | - Zhanzhao Li
- Istituto Italiano di Tecnologiavia MoregoGenova16163Italy
| | - Francesco Bruni
- Dipartimento di Scienza dei MaterialiUniversità degli Studi di Milano Bicoccavia R. Cozzi 55Milano20125Italy
| | - Ihor Cherniukh
- Department of Chemistry and Applied BioscienceETH ZürichZürich8093Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Francesco Carulli
- Dipartimento di Scienza dei MaterialiUniversità degli Studi di Milano Bicoccavia R. Cozzi 55Milano20125Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi di Milano Bicoccavia R. Cozzi 55Milano20125Italy
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied BioscienceETH ZürichZürich8093Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Liberato Manna
- Istituto Italiano di Tecnologiavia MoregoGenova16163Italy
| | - Sergio Brovelli
- Dipartimento di Scienza dei MaterialiUniversità degli Studi di Milano Bicoccavia R. Cozzi 55Milano20125Italy
| |
Collapse
|
2
|
Ahmed T, Tan X, Li BY, Cook E, Williams J, Tiano SM, Coffey B, Tenney SM, Hayes D, Caram JR. Heteroconfinement in Single CdTe Nanoplatelets. ACS NANO 2025; 19:3944-3952. [PMID: 39808109 DOI: 10.1021/acsnano.4c17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Dimension-engineered synthesis of atomically thin II-VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs. Combining ensemble and single-particle spectroscopic and microscopic tools, our work suggests that beyond 2 ML CdTe NPLs, higher ML structures initially appear as heteroconfined materials with colocalized multilayer structures. In particular, we observe strongly colocalized 3 and 4 ML emissions, accompanied by a broad trap emission. Accompanying transient absorption, single-particle optical, and atomic force microscopy analyses suggest islands of different MLs on the same NPL. To explain the nonstandard nucleation and growth of these heteroconfined structures, we simulated the growth conditions of NPLs and quantified how the monomer binding energy modifies the kinetics and permits single NPLs with multi-ML structures. Our findings suggest that the lower bond energy associated with CdTe relative to CdSe limits higher ML syntheses and explains the observed differences between CdTe and CdSe growth.
Collapse
Affiliation(s)
- Tasnim Ahmed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Xuanheng Tan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Barry Y Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Elijah Cook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Jillian Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Sophia M Tiano
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Belle Coffey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Stephanie M Tenney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Ospanova A, Koshkinbayev Y, Kainarbay A, Alibay T, Daurenbekova R, Akhmetova A, Vinokurov A, Bubenov S, Dorofeev S, Daurenbekov D. Investigation of the Influence of Structure, Stoichiometry, and Synthesis Temperature on the Optical Properties of CdTe Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1814. [PMID: 39591055 PMCID: PMC11597514 DOI: 10.3390/nano14221814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
Colloidal cadmium telluride (CdTe) nanoplatelets (NPLs) are promising materials for optoelectronic applications, such as photovoltaics and light-emitting diodes, due to their unique optical and electronic properties. However, controlling their growth, thickness, and stoichiometry remains challenging. This study explores the effect of synthesis temperature on the structural, optical, and stoichiometric properties of CdTe NPLs. CdTe NPLs were synthesized at temperatures of 170 °C, 180 °C, 190 °C, and 200 °C using colloidal methods. The resulting NPLs were characterized by UV-Vis absorption spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and total reflection X-ray fluorescence (TXRF) to assess their morphology, structure, and elemental composition. The results showed that the synthesis temperature significantly affected the NPL's morphology and stoichiometry. Optimal stoichiometry was achieved at 180 °C and 190 °C, with the crystal structure transitioning from zinc blende at lower temperatures to wurtzite at higher temperatures. Optical properties, including luminescence intensity and emission peaks, also varied with temperature. The synthesis temperature is an important parameter in controlling the structural and optical properties of CdTe NPLs. The optimal conditions for obtaining NPLs with the best characteristics were identified at 190 °C, presenting important findings for further optimization of CdTe NPL synthesis for optoelectronic applications.
Collapse
Affiliation(s)
- Aigerim Ospanova
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| | - Yerkebulan Koshkinbayev
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| | - Asset Kainarbay
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| | - Temirulan Alibay
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| | - Rakhima Daurenbekova
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| | - Aizhan Akhmetova
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| | - Alexander Vinokurov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
| | - Sergei Bubenov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
| | - Sergey Dorofeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
| | - Dulat Daurenbekov
- Institute of Physical and Technical Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan Str., 13, 010000 Astana, Kazakhstan; (A.O.)
| |
Collapse
|
4
|
Panigrahi G, Berseneva AA, Morrison G, King AA, Conner RL, Jacobsohn LG, Zur Loye HC. Crystal Growth of Quaternary AkRE 2Si 2S 8 (Ak = Ca and Sr; RE = La-Tb) Thiosilicates Using Flux-Assisted Boron Chalcogen Mixture Method: Exploring X-ray Scintillation, Luminescence, and Magnetic Properties. Inorg Chem 2024; 63:12849-12857. [PMID: 38943660 DOI: 10.1021/acs.inorgchem.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
We report on the detailed structural analysis of a series of 11 new quaternary rare earths containing thiosilicates, AkRE2Si2S8 (Ak = Ca and Sr; RE = La, Ce, Pr, Nd, Sm, Gd, and Tb), synthesized using the flux-assisted boron chalcogen mixture method. High quality crystals were grown and used to determine their crystal structures by single crystal X-ray diffraction. All members of the AkRE2Si2S8 series crystallize in the trigonal crystal system with space group R3̅c (space group no. 167). Polycrystalline powders were used for physical property measurements, including magnetic susceptibility, diffuse reflectance in the UV-visible range, and scintillation. Magnetic measurements indicated that CaRE2Si2S8 (RE = Nd and Tb) exhibits paramagnetic behavior with a slightly negative Weiss constant. The band gaps of the materials were determined from diffuse reflectance data, and optical band gaps were estimated to be 2.5(1) and 2.9(1) eV for CaCe2Si2S8 and CaGd2Si2S8, respectively. CaCe2Si2S8, CaTb2Si2S8, and SrCe2Si2S8 exhibited intense green luminescence upon irradiation with 375 nm ultraviolet light and, furthermore, scintillated when exposed to X-rays. Radioluminescence measurements of CaCe2Si2S8 powder revealed green emission with an intensity approximately 14% of that emitted by bismuth germanium oxide powder.
Collapse
Affiliation(s)
- Gopabandhu Panigrahi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Adam A King
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Robin L Conner
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Luiz G Jacobsohn
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Guzelturk B, Diroll BT, Cassidy JP, Harankahage D, Hua M, Lin XM, Iyer V, Schaller RD, Lawrie BJ, Zamkov M. Bright and durable scintillation from colloidal quantum shells. Nat Commun 2024; 15:4274. [PMID: 38769114 PMCID: PMC11106345 DOI: 10.1038/s41467-024-48351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Efficient, fast, and robust scintillators for ionizing radiation detection are crucial in various fields, including medical diagnostics, defense, and particle physics. However, traditional scintillator technologies face challenges in simultaneously achieving optimal performance and high-speed operation. Herein we introduce colloidal quantum shell heterostructures as X-ray and electron scintillators, combining efficiency, speed, and durability. Quantum shells exhibit light yields up to 70,000 photons MeV-1 at room temperature, enabled by their high multiexciton radiative efficiency thanks to long Auger-Meitner lifetimes (>10 ns). Radioluminescence is fast, with lifetimes of 2.5 ns and sub-100 ps rise times. Additionally, quantum shells do not exhibit afterglow and maintain stable scintillation even under high X-ray doses (>109 Gy). Furthermore, we showcase quantum shells for X-ray imaging achieving a spatial resolution as high as 28 line pairs per millimeter. Overall, efficient, fast, and durable scintillation make quantum shells appealing in applications ranging from ultrafast radiation detection to high-resolution imaging.
Collapse
Affiliation(s)
- Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
| | - James P Cassidy
- Department of Physics, Bowling Green State University, Bowling Green, OH, USA
| | | | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Vasudevan Iyer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mikhail Zamkov
- Department of Physics, Bowling Green State University, Bowling Green, OH, USA.
| |
Collapse
|
6
|
Cova F, Erroi A, Zaffalon ML, Cemmi A, Di Sarcina I, Perego J, Monguzzi A, Comotti A, Rossi F, Carulli F, Brovelli S. Scintillation Properties of CsPbBr 3 Nanocrystals Prepared by Ligand-Assisted Reprecipitation and Dual Effect of Polyacrylate Encapsulation toward Scalable Ultrafast Radiation Detectors. NANO LETTERS 2024; 24:905-913. [PMID: 38197790 DOI: 10.1021/acs.nanolett.3c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.
Collapse
Affiliation(s)
- Francesca Cova
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Andrea Erroi
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Matteo L Zaffalon
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Alessia Cemmi
- ENEA Fusion and Technology for Nuclear Safety and Security Department, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Ilaria Di Sarcina
- ENEA Fusion and Technology for Nuclear Safety and Security Department, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Jacopo Perego
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Francesco Carulli
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Sergio Brovelli
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
7
|
Diroll BT, Hua M, Guzelturk B, Pálmai M, Tomczak K. Long-Lived and Bright Biexcitons in Quantum Dots with Parabolic Band Potentials. NANO LETTERS 2023; 23:11975-11981. [PMID: 38079425 DOI: 10.1021/acs.nanolett.3c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Multiple exciton physics in semiconductor nanocrystals play an important role in optoelectronic devices. This work investigates radially alloyed CdZnSe/CdS nanocrystals with suppressed Auger recombination due to the spatial separation of carriers, which also underpins their performance in optical gain and scintillation experiments. Due to suppressed Auger recombination, the biexciton lifetime is greater than 10 ns, much longer than most nanocrystals. The samples show optical gain, amplified spontaneous emission, and lasing at thresholds <2 excitons per particle. They also show broad gain bandwidth (>500 meV) encompassing 4 amplified spontaneous emission bands. Similarly enabled by slowed multiple exciton relaxation, the samples display strong performance in scintillating films under X-ray illumination. The CdZnSe/CdS samples have fast radioluminescence rise (<80 ps) and decay times (<5 ns), light yields up to 6700 photons·MeV-1, and the demonstrated capacity for incorporation into large area films for scintillation imaging.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Sciences Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Marcell Pálmai
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Kyle Tomczak
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
8
|
Medda A, Ghosh S, Patra A. Transition Metal Ions Influence the Performance of Photodetector of Two-Dimensional CdS Nanoplatelets. Chemistry 2023; 29:e202301364. [PMID: 37530488 DOI: 10.1002/chem.202301364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
Transition metal-doped two-dimensional (2D) semiconductor nanoplatelets (NPLs) with atomically precise thickness have attracted much research interest due to their inherent photo-physical properties. In this work, we have synthesized 2D Cu-doped CdS NPLs, investigated the charge transfer dynamics using ultrafast transient absorption spectroscopy, and fabricated an efficient photodetector device. A large Stoke's shifted emission at ~685 nm with an average lifetime of about ~1.45 μs is observed in Cu-doped CdS NPLs. Slower bleach recovery kinetics leads to large charge carrier separation in Cu-doped NPLs which is beneficial for photodetector applications. Cu-doped NPLs-based photodetectors exhibit high photocurrent, fast response (~120 ms), ~600 times higher photoresponsivity, and ~300 times higher detectivity (~4.1×1013 Jones) than undoped CdS NPLs. These excellent properties of Cu-doped CdS NPLs make this material an efficient alternative for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Anusri Medda
- School of Materials Sciences, Indian Association for the Cultivation of Science
| | - Soubhik Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, India
| |
Collapse
|