1
|
Graml M, Zollner K, Hernangómez-Pérez D, Faria Junior PE, Wilhelm J. Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers. J Chem Theory Comput 2024; 20:2202-2208. [PMID: 38353944 PMCID: PMC10938508 DOI: 10.1021/acs.jctc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
The GW method is widely used for calculating the electronic band structure of materials. The high computational cost of GW algorithms prohibits their application to many systems of interest. We present a periodic, low-scaling, and highly efficient GW algorithm that benefits from the locality of the Gaussian basis and the polarizability. The algorithm enables G0W0 calculations on a MoSe2/WS2 bilayer with 984 atoms per unit cell, in 42 h using 1536 cores. This is 4 orders of magnitude faster than a plane-wave G0W0 algorithm, allowing for unprecedented computational studies of electronic excitations at the nanoscale.
Collapse
Affiliation(s)
- Maximilian Graml
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
- Regensburg
Center for Ultrafast Nanoscopy (RUN), University
of Regensburg, 93053 Regensburg, Germany
| | - Klaus Zollner
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Hernangómez-Pérez
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paulo E. Faria Junior
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Wilhelm
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
- Regensburg
Center for Ultrafast Nanoscopy (RUN), University
of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Polovnikov B, Scherzer J, Misra S, Huang X, Mohl C, Li Z, Göser J, Förste J, Bilgin I, Watanabe K, Taniguchi T, Högele A, Baimuratov AS. Field-Induced Hybridization of Moiré Excitons in MoSe_{2}/WS_{2} Heterobilayers. PHYSICAL REVIEW LETTERS 2024; 132:076902. [PMID: 38427888 DOI: 10.1103/physrevlett.132.076902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe_{2}/WS_{2}.
Collapse
Affiliation(s)
- Borislav Polovnikov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
| | - Johannes Scherzer
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Subhradeep Misra
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Xin Huang
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Christian Mohl
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Zhijie Li
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Jonas Göser
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Jonathan Förste
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ismail Bilgin
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
3
|
Blundo E, Tuzi F, Cianci S, Cuccu M, Olkowska-Pucko K, Kipczak Ł, Contestabile G, Miriametro A, Felici M, Pettinari G, Taniguchi T, Watanabe K, Babiński A, Molas MR, Polimeni A. Localisation-to-delocalisation transition of moiré excitons in WSe 2/MoSe 2 heterostructures. Nat Commun 2024; 15:1057. [PMID: 38316753 PMCID: PMC10844653 DOI: 10.1038/s41467-024-44739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Moiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g., for creating nanoscale-ordered quantum emitters and achieving or probing strongly correlated electronic phases at relatively high temperatures. Here, we studied the exciton properties of WSe2/MoSe2 HSs from T = 6 K to room temperature using time-resolved and continuous-wave micro-photoluminescence also under a magnetic field. The exciton dynamics and emission lineshape evolution with temperature show clear signatures that MXs de-trap from the moiré potential and turn into free interlayer excitons (IXs) for temperatures above 100 K. The MX-to-IX transition is also apparent from the exciton magnetic moment reversing its sign when the moiré potential is not capable of localising excitons at elevated temperatures. Concomitantly, the exciton formation and decay times reduce drastically. Thus, our findings establish the conditions for a truly confined nature of the exciton states in a moiré superlattice with increasing temperature and photo-generated carrier density.
Collapse
Affiliation(s)
- Elena Blundo
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Federico Tuzi
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Cianci
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marzia Cuccu
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Łucja Kipczak
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Giorgio Contestabile
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Miriametro
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Felici
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Pettinari
- Institute for Photonics and Nanotechnologies, National Research Council, 00133, Rome, Italy
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Antonio Polimeni
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
Serati de Brito C, Faria Junior PE, Ghiasi TS, Ingla-Aynés J, Rabahi CR, Cavalini C, Dirnberger F, Mañas-Valero S, Watanabe K, Taniguchi T, Zollner K, Fabian J, Schüller C, van der Zant HSJ, Gobato YG. Charge Transfer and Asymmetric Coupling of MoSe 2 Valleys to the Magnetic Order of CrSBr. NANO LETTERS 2023. [PMID: 38019289 DOI: 10.1021/acs.nanolett.3c03431] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
van der Waals heterostructures composed of two-dimensional (2D) transition metal dichalcogenides and vdW magnetic materials offer an intriguing platform to functionalize valley and excitonic properties in nonmagnetic TMDs. Here, we report magneto photoluminescence (PL) investigations of monolayer (ML) MoSe2 on the layered A-type antiferromagnetic (AFM) semiconductor CrSBr under different magnetic field orientations. Our results reveal a clear influence of the CrSBr magnetic order on the optical properties of MoSe2, such as an anomalous linear-polarization dependence, changes of the exciton/trion energies, a magnetic-field dependence of the PL intensities, and a valley g-factor with signatures of an asymmetric magnetic proximity interaction. Furthermore, first-principles calculations suggest that MoSe2/CrSBr forms a broken-gap (type-III) band alignment, facilitating charge transfer processes. The work establishes that antiferromagnetic-nonmagnetic interfaces can be used to control the valley and excitonic properties of TMDs, relevant for the development of opto-spintronics devices.
Collapse
Affiliation(s)
- Caique Serati de Brito
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Paulo E Faria Junior
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Talieh S Ghiasi
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Josep Ingla-Aynés
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - César Ricardo Rabahi
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Camila Cavalini
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Florian Dirnberger
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität, 01069 Dresden, Germany
| | - Samuel Mañas-Valero
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Klaus Zollner
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Christian Schüller
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Yara Galvão Gobato
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
5
|
Singh S, Gong W, Stevens CE, Hou J, Singh A, Zhang H, Anantharaman SB, Mohite AD, Hendrickson JR, Yan Q, Jariwala D. Valley-Polarized Interlayer Excitons in 2D Chalcogenide-Halide Perovskite-van der Waals Heterostructures. ACS NANO 2023; 17:7487-7497. [PMID: 37010369 DOI: 10.1021/acsnano.2c12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden-Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.
Collapse
Affiliation(s)
- Simrjit Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher E Stevens
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- KBR Inc., Beavercreek, Ohio 45431, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Aditya Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aditya D Mohite
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Faria Junior PE, Fabian J. Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe 2/WSe 2 Heterobilayers: From Energy Bands to Dipolar Excitons. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1187. [PMID: 37049281 PMCID: PMC10096971 DOI: 10.3390/nano13071187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Multilayered van der Waals heterostructures based on transition metal dichalcogenides are suitable platforms on which to study interlayer (dipolar) excitons, in which electrons and holes are localized in different layers. Interestingly, these excitonic complexes exhibit pronounced valley Zeeman signatures, but how their spin-valley physics can be further altered due to external parameters-such as electric field and interlayer separation-remains largely unexplored. Here, we perform a systematic analysis of the spin-valley physics in MoSe2/WSe2 heterobilayers under the influence of an external electric field and changes of the interlayer separation. In particular, we analyze the spin (Sz) and orbital (Lz) degrees of freedom, and the symmetry properties of the relevant band edges (at K, Q, and Γ points) of high-symmetry stackings at 0° (R-type) and 60° (H-type) angles-the important building blocks present in moiré or atomically reconstructed structures. We reveal distinct hybridization signatures on the spin and the orbital degrees of freedom of low-energy bands, due to the wave function mixing between the layers, which are stacking-dependent, and can be further modified by electric field and interlayer distance variation. We find that H-type stackings favor large changes in the g-factors as a function of the electric field, e.g., from -5 to 3 in the valence bands of the Hhh stacking, because of the opposite orientation of Sz and Lz of the individual monolayers. For the low-energy dipolar excitons (direct and indirect in k-space), we quantify the electric dipole moments and polarizabilities, reflecting the layer delocalization of the constituent bands. Furthermore, our results show that direct dipolar excitons carry a robust valley Zeeman effect nearly independent of the electric field, but tunable by the interlayer distance, which can be rendered experimentally accessible via applied external pressure. For the momentum-indirect dipolar excitons, our symmetry analysis indicates that phonon-mediated optical processes can easily take place. In particular, for the indirect excitons with conduction bands at the Q point for H-type stackings, we find marked variations of the valley Zeeman (∼4) as a function of the electric field, which notably stands out from the other dipolar exciton species. Our analysis suggests that stronger signatures of the coupled spin-valley physics are favored in H-type stackings, which can be experimentally investigated in samples with twist angle close to 60°. In summary, our study provides fundamental microscopic insights into the spin-valley physics of van der Waals heterostructures, which are relevant to understanding the valley Zeeman splitting of dipolar excitonic complexes, and also intralayer excitons.
Collapse
Affiliation(s)
- Paulo E. Faria Junior
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|