1
|
Ma M, Yu Q, Zhang J, Chen X, Li W, Qu X, Zhang X, Feng J, Wei F, Yuan J, Cheng T, Dai S, Wang Y, Song B, Shen B. Imaging molecular structures and interactions by enhanced confinement effect in electron microscopy. Nat Commun 2025; 16:2447. [PMID: 40069228 PMCID: PMC11897175 DOI: 10.1038/s41467-025-57816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Atomic imaging of molecules and intermolecular interactions are of great significance for a deeper understanding of the basic physics and chemistry in various applications, but it is still challenging in electron microscopy due to their thermal mobility and beam sensitivity. Confinement effect and low-dose imaging method may efficiently help us achieve stable high-resolution resolving of molecules and their interactions. Here, we propose a general strategy to image the confined molecules and evaluate the strengths of host-guest interactions in three material systems by low-dose electron microscopy. Then, we change the guest molecules to analyze how each kind of interaction strength influences the imaging quality of these molecules by using a same parameter, the aspect ratios of imaged molecular projections. In the material systems of perovskites (ionic) and zeolites with adsorbed molecules (van der Waals), we can obtain a clear image of molecular configurations by enhancing host-guest interactions. Even in metal organic framework (coordination) system, the atomic structures and bonds of aromatics can be achieved. These results provide a general description on the relation between molecular images and interactions, making it possible to study more molecular behaviors in wide applications by real-space imaging.
Collapse
Affiliation(s)
- Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Qinnan Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jiayi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Wenbo Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xianlin Qu
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, PR China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jiale Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, PR China.
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Liu Y, Ma M, Zhang X, Song B, Chen X, Wei F, Yuan J, Shen B. Atomic Imaging of the Pb Precipitation in Lead-Halide Perovskites. SMALL METHODS 2024; 8:e2301617. [PMID: 38368262 DOI: 10.1002/smtd.202301617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Indexed: 02/19/2024]
Abstract
The lead iodide (PbI2) in lead-halide perovskite (LHP) is both a positive additive for material properties and a site for the formation of device defects. Therefore, atomic-level detection of PbI2 and its derived Pb structures are crucial for understanding the performance and stability of the LHP material. In this work, the atomic imaging of the LHP, PbI2, and Pb lattices is achieved using low-dose integrated differential phase contrast (iDPC) scanning transmission electron microscopy (STEM). Combining it with the traditional high-angle annular dark field (HAADF)-STEM, the Pb precipitation in different LHPs (CsPbI3, CsPbBr3, and FAPbI3) and under different conditions (light, air, and heat) can be investigated in real space. Then, the features of Pb precipitation (positions and sizes) are visually revealed under different conditions and the stabilities of different LHPs. Meanwhile, the pathway of Pb precipitation is directly imaged and confirmed by the iDPC-STEM during an in situ heating process, supporting the detailed mechanism of Pb precipitation. These results provide the visual evidence for analyzing atomic Pb precipitation in LHPs, which helps better understand the structure-property relation induced by Pb impurity.
Collapse
Affiliation(s)
- Yusheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Feng J, Feng Z, Xu L, Meng H, Chen X, Ma M, Wang L, Song B, Tang X, Dai S, Wei F, Cheng T, Shen B. Real-space imaging for discovering a rotated node structure in metal-organic framework. Nat Commun 2024; 15:6962. [PMID: 39138219 PMCID: PMC11322488 DOI: 10.1038/s41467-024-51384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Resolving the detailed structures of metal organic frameworks is of great significance for understanding their structure-property relation. Real-space imaging methods could exhibit superiority in revealing not only the local structure but also the bulk symmetry of these complex porous materials, compared to reciprocal-space diffraction methods, despite the technical challenges. Here we apply a low-dose imaging technique to clearly resolve the atomic structures of building units in a metal-organic framework, MIL-125. An unexpected node structure is discovered by directly imaging the rotation of Ti-O nodes, different from the unrotated structure predicted by previous X-ray diffraction. The imaged structure and symmetry can be confirmed by the structural simulations and energy calculations. Then, the distribution of node rotation from the edge to the center of a MIL-125 particle is revealed by the image analysis of Ti-O rotation. The related defects and surface terminations in MIL-125 are also investigated in the real-space images. These results not only unraveled the node symmetry in MIL-125 with atomic resolution but also inspired further studies on discovering more unpredicted structural changes in other porous materials by real-space imaging methods.
Collapse
Affiliation(s)
- Jiale Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhipeng Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Haibing Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Liu Y, Liu S, Xu L, Ma M, Zhang X, Chen X, Wei F, Song B, Cheng T, Yuan J, Shen B. Atomic Imaging of Multi-Dimensional Ruddlesden-Popper Interfaces in Lead-Halide Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400013. [PMID: 38433394 DOI: 10.1002/smll.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.
Collapse
Affiliation(s)
- Yusheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Suya Liu
- Shanghai Nanoport, Thermo Fisher Scientific, Building A, No.2537, Jinke Road. Pudong District, Shanghai, China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Zhan Z, Liu Y, Wang W, Du G, Cai S, Wang P. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. NANOSCALE HORIZONS 2024; 9:900-933. [PMID: 38512352 DOI: 10.1039/d3nh00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electron microscopy, an important technique that allows for the precise determination of structural information with high spatiotemporal resolution, has become indispensable in unravelling the complex relationships between material structure and properties ranging from mesoscale morphology to atomic arrangement. However, beam-sensitive materials, particularly those comprising organic components such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), would suffer catastrophic damage from the high energy electrons, hindering the determination of atomic structures. A low-dose approach has arisen as a possible solution to this problem based on the integration of advancements in several aspects: electron optical system, detector, image processing, and specimen preservation. This article summarizes the transmission electron microscopy characterization of MOFs and COFs, including local structures, host-guest interactions, and interfaces at the atomic level. Revolutions in advanced direct electron detectors, algorithms in image acquisition and processing, and emerging methodology for high quality low-dose imaging are also reviewed. Finally, perspectives on the future development of electron microscopy methodology with the support of computer science are presented.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Yuxin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
6
|
Gu Z, Wang K, Rao Y, Nan P, Cheng L, Ge B, Zhang W, Ma C. Atomic-Resolution Electron Microscopy Unravelling the Role of Unusual Asymmetric Twin Boundaries in the Electron-Beam-Sensitive NASICON-Type Solid Electrolyte. NANO LETTERS 2023; 23:11818-11826. [PMID: 38078871 DOI: 10.1021/acs.nanolett.3c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
An atomic-scale understanding of the role of nonperiodic features is essential to the rational design of highly Li-ion-conductive solid electrolytes. Unfortunately, most solid electrolytes are easily damaged by the intense electron beam needed for atomic-resolution electron microscopy observation, so the reported in-depth atomic-scale studies are limited to Li0.33La0.56TiO3- and Li7La3Zr2O12-based materials. Here, we observe on an atomic scale a third type of solid electrolyte, Li1.3Al0.3Ti1.7(PO4)3 (LATP), through minimization of damage induced by specimen preparation. With this capability, LATP is found to contain large amounts of twin boundaries with an unusual asymmetric atomic configuration. On the basis of the experimentally determined structure, the theoretical calculations suggest that such asymmetric twin boundaries may considerably promote Li-ion transport. This discovery identifies a new entry point for optimizing ionic conductivity, and the method presented here will also greatly benefit the mechanistic study of solid electrolytes.
Collapse
Affiliation(s)
- Zhenqi Gu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Materials & Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yifei Rao
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Nan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Lixun Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cheng Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
8
|
Wang L, Ma M, Wang H, Xiong H, Chen X, Wei F, Shen B. Real-Space Imaging of the Molecular Changes in Metal-Organic Frameworks under Electron Irradiation. ACS NANO 2023; 17:4740-4747. [PMID: 36811555 DOI: 10.1021/acsnano.2c11110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electron-induced structural changes influence the characterizations of the local structure of various materials by electron microscope. However, for beam-sensitive materials, it is still challenging to detect such changes by electron microscopy, which may help us quantitatively reveal how electrons interact with materials under electron irradiation. Here, we use an emergent phase contrast technique in electron microscopy to clearly image a metal-organic framework, UiO-66 (Zr), at an ultralow electron dose and dose rate. The effects of both the dose and dose rate on the UiO-66 (Zr) structure are visualized, which induce obvious missing organic linkers. The kinetics of the missing linker based on the radiolysis mechanism are semiquantitatively expressed by the different intensities of the imaged organic linkers. Deformation of the UiO-66 (Zr) lattice after the missing linker is also observed. These observations make it possible to visually investigate the electron-induced chemistry in various beam-sensitive materials and avoid electron damage to them.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Mengmeng Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Huiqiu Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Boyuan Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|