1
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
2
|
Zhang T, Berghaus M, Li Y, Song Q, Stollenwerk MM, Persson J, Shea KJ, Sellergren B, Lv Y. PSMA-Targeting Imprinted Nanogels for Prostate Tumor Localization and Imaging. Adv Healthc Mater 2025; 14:e2401929. [PMID: 39690809 DOI: 10.1002/adhm.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity. Herein, this work develops a novel PSMA-targeting synthetic antibody to address prior limitations. This work synthesizes fluorescently labelled, N-isopropylacrylamide-based epitope imprinted nanogels (MIP-M) using a dispersion of magnetic nanoparticles as template carriers with a linear epitope from PSMA's extracellular apical domain as the template. MIP-M demonstrates high binding affinities for both the epitope template (apparent KD = 6 × 10-10 м) and PSMA (apparent KD = 2.5 × 10-9 м). Compared to reference peptides and human serum albumin, MIP-M indicates high specificity. Flow cytometry and confocal laser scanning microscopy comparing cell lines displaying normal (PC3) and enhanced (LNCaP) PSMA expression levels, revealed that MIP-M and a PSMA antibody exhibits comparable binding preferences for the latter cell line. Moreover, MIP-M demonstrates selectivity on par with the PSMA antibody for targeting PSMA-positive prostate tumor over normal tissue, enabling discrimination. This MIP-M addresses stability, production, specificity and toxicity limitations of prior targeting agents and offer a promising alternative for PSMA-directed cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Melanie Berghaus
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingmei Song
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Maria M Stollenwerk
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Jenny Persson
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Kenneth J Shea
- Department of Chemistry, University of California Irvine, California, 92697, USA
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Jo K, Linh VTN, Yang JY, Heo B, Kim JY, Mun NE, Im JH, Kim KS, Park SG, Lee MY, Yoo SW, Jung HS. Machine learning-assisted label-free colorectal cancer diagnosis using plasmonic needle-endoscopy system. Biosens Bioelectron 2024; 264:116633. [PMID: 39126906 DOI: 10.1016/j.bios.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Early and accurate detection of colorectal cancer (CRC) is critical for improving patient outcomes. Existing diagnostic techniques are often invasive and carry risks of complications. Herein, we introduce a plasmonic gold nanopolyhedron (AuNH)-coated needle-based surface-enhanced Raman scattering (SERS) sensor, integrated with endoscopy, for direct mucus sampling and label-free detection of CRC. The thin and flexible stainless-steel needle is coated with polymerized dopamine, which serves as an adhesive layer and simultaneously initiates the nucleation of gold nanoparticle (AuNP) seeds on the needle surface. The AuNP seeds are further grown through a surface-directed reduction using Au ions-hydroxylamine hydrochloride solution, resulting in the formation of dense AuNHs. The formation mechanism of AuNHs and the layered structure of the plasmonic needle-based SERS (PNS) sensor are thoroughly analyzed. Furthermore, a strong field enhancement of the PNS sensor is observed, amplified around the edges of the polyhedral shapes and at nanogap sites between AuNHs. The feasibility of the PNS sensor combined with endoscopy system is further investigated using mouse models for direct colonic mucus sampling and verifying noninvasive label-free classification of CRC from normal controls. A logistic regression-based machine learning method is employed and successfully differentiates CRC and normal mice, achieving 100% sensitivity, 93.33% specificity, and 96.67% accuracy. Moreover, Raman profiling of metabolites and their correlations with Raman signals of mucus samples are analyzed using the Pearson correlation coefficient, offering insights for identifying potential cancer biomarkers. The developed PNS-assisted endoscopy technology is expected to advance the early screening and diagnosis approach of CRC in the future.
Collapse
Affiliation(s)
- Kangseok Jo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jun-Yeong Yang
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Boyou Heo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jun Young Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Na Eun Mun
- Biomedical Science Graduate Program, Chonnam National University, Hwasun, 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea
| | - Jin Hee Im
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Su Woong Yoo
- Biomedical Science Graduate Program, Chonnam National University, Hwasun, 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea.
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; Advanced Materials Engineering Division, University of Science and Technology (UST), Daejeon, 34113, South Korea; School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
4
|
Ya N, Zhang D, Wang Y, Zheng Y, Yang M, Wu H, Oudeng G. Recent advances of biocompatible optical nanobiosensors in liquid biopsy: towards early non-invasive diagnosis. NANOSCALE 2024; 16:13784-13801. [PMID: 38979555 DOI: 10.1039/d4nr01719f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Liquid biopsy is a non-invasive diagnostic method that can reduce the risk of complications and offers exceptional benefits in the dynamic monitoring and acquisition of heterogeneous cell population information. Optical nanomaterials with excellent light absorption, luminescence, and photoelectrochemical properties have accelerated the development of liquid biopsy technologies. Owing to the unique size effect of optical nanomaterials, their improved optical properties enable them to exhibit good sensitivity and specificity for mitigating signal interference from various molecules in body fluids. Nanomaterials with biocompatible and optical sensing properties play a crucial role in advancing the maturity and diversification of liquid biopsy technologies. This article offers a comprehensive review of recent advanced liquid biopsy technologies that utilize novel biocompatible optical nanomaterials, including fluorescence, colorimetric, photoelectrochemical, and Raman broad-spectrum-based biosensors. We focused on liquid biopsy for the most significant early biomarkers in clinical medicine, and specifically reviewed reports on the effectiveness of optical nanosensing technology in the detection of real patient samples, which may provide basic evidence for the transition of optical nanosensing technology from engineering design to clinical practice. Furthermore, we introduced the integration of optical nanosensing-based liquid biopsy with modern devices, such as smartphones, to demonstrate the potential of the technology in portable clinical diagnosis.
Collapse
Affiliation(s)
- Na Ya
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Dangui Zhang
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Wang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Yi Zheng
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Mo Yang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Hao Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Gerile Oudeng
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
5
|
Liu Y, He Y, Zhang G, Yang J, Li Y. Multifunctional Self-Signaling nanoMIP and Its Application for a Washing-Free Assay of Human Angiotensin-Converting Enzyme 2. Anal Chem 2024; 96:7602-7608. [PMID: 38671546 DOI: 10.1021/acs.analchem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Molecular imprinting techniques have attracted a lot of attention as a potential biomimetic technology, but there are still challenges in protein imprinting. Herein, multifunctional nanosized molecularly imprinted polymers (nanoMIPs) for human angiotensin-converting enzyme 2 (ACE2) were prepared by epitope imprinting of magnetic nanoparticles-anchored peptide (magNP-P) templates, which were further applied to construct a competitive displacement fluorescence assay toward ACE2. A cysteine-flanked dodecapeptide sequence was elaborately selected as an epitope for ACE2, which was immobilized onto the surface of magnetic nanoparticles and served as a magNP-P template for imprinting. During polymerization, fluorescent monomers were introduced to endow fluorescence responsiveness to the prepared self-signaling nanoMIPs. A competitive displacement fluorescence assay based on the nanoMIPs was established and operated in a washing-free manner, yielding a wide range for ACE2 (0.1-6.0 pg/mL) and a low detection limit (0.081 pg/mL). This approach offers a promising avenue in the preparation of nanoMIPs for macromolecule recognition and expands potential application of an MIP in the detection of proteins as well as peptides.
Collapse
Affiliation(s)
- Yujian Liu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen 518102, China
| | - Guanghui Zhang
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen 518102, China
| | - Jiao Yang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Liu M, Wang T, Zhang Q, Pan C, Liu S, Chen Y, Lin D, Feng S. An outlier removal method based on PCA-DBSCAN for blood-SERS data analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:846-855. [PMID: 38231020 DOI: 10.1039/d3ay02037a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has shown promising potential in cancer screening. In practical applications, Raman spectra are often affected by deviations from the spectrometer, changes in measurement environments, and anomalies in spectrum characteristic peak intensities due to improper sample storage. Previous research has overlooked the presence of outliers in categorical data, leading to significant impacts on model learning outcomes. In this study, we propose a novel method, called Principal Component Analysis and Density Based Spatial Clustering of Applications with Noise (PCA-DBSCAN) to effectively remove outliers. This method employs dimensionality reduction and spectral data clustering to identify and remove outliers. The PCA-DBSCAN method introduces adjustable parameters (Eps and MinPts) to control the clustering effect. The effectiveness of the proposed PCA-DBSCAN method is verified through modeling on outlier-removed datasets. Further refinement of the machine learning model and PCA-DBSCAN parameters resulted in the best cancer screening model, achieving 97.41% macro-average recall and 97.74% macro-average F1-score. This paper introduces a new outlier removal method that significantly improves the performance of the SERS cancer screening model. Moreover, the proposed method serves as inspiration for outlier detection in other fields, such as biomedical research, environmental monitoring, manufacturing, quality control, and hazard prediction.
Collapse
Affiliation(s)
- Miaomiao Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Tingyin Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Qiyi Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Changbin Pan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Shuhang Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Yuanmei Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China.
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
7
|
Chu BY, Lin C, Nie PC, Xia ZY. Research Status in the Use of Surface-Enhanced Raman Scattering (SERS) to Detect Pesticide Residues in Foods and Plant-Derived Chinese Herbal Medicines. Int J Anal Chem 2024; 2024:5531430. [PMID: 38250173 PMCID: PMC10798841 DOI: 10.1155/2024/5531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Surface-enhanced Raman scattering (SERS) technology has unique advantages in the rapid detection of pesticides in plant-derived foods, leading to reduced detection limits and increased accuracy. Plant-derived Chinese herbal medicines have similar sources to plant-derived foods; however, due to the rough surfaces and complex compositions of herbal medicines, the detection of pesticide residues in this context continues to rely heavily on traditional methods, which are time consuming and laborious and are unable to meet market demands for portability. The application of flexible nanomaterials and SERS technology in this realm would allow rapid and accurate detection in a portable format. Therefore, in this review, we summarize the underlying principles and characteristics of SERS technology, with particular focus on applications of SERS for the analysis of pesticide residues in agricultural products. This paper summarizes recent research progress in the field from three main directions: sample pretreatment, SERS substrates, and data processing. The prospects and limitations of SERS technology are also discussed, in order to provide theoretical support for rapid detection of pesticide residues in Chinese herbal medicines.
Collapse
Affiliation(s)
- Bing-Yan Chu
- School of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Chi Lin
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peng-Cheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zheng-Yan Xia
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
8
|
Liu H, Zhang C, Wang C, Fan K, Zhang Y, Fang L, Li L, Ren C, Yin ZZ, Lü Z. A highly selective and sensitive sensor for promethazine based on molecularly imprinted interface coated Au/Sn bimetal nanoclusters functionalized acupuncture needle microelectrode. Anal Chim Acta 2023; 1269:341395. [PMID: 37290856 DOI: 10.1016/j.aca.2023.341395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Promethazine (PMZ) is an effective antihistamine that is used as a nerve tranquilizer to treat mental disorders. However, drug abuse causes harm to the human body and also pollutes the environment to a certain extent. Therefore, it is crucial to develop a highly selective and sensitive biosensor for PMZ determination. An acupuncture needle (AN) was used as an electrode in 2015, and further research on the electrode's essence in electrochemistry is needed. In this work, a sensor based on a surface imprinted film coordinated Au/Sn biometal was first fabricated on AN via electrochemistry. The obtained cavities showed complementary and suitable sites for "N atom" electron transfer through the phenyl ring structure in promethazine, which is rigorous for the configuration near the interface. Under the optimal conditions, MIP/Au/Sn/ANE exhibits a good linear relationship in the range of 0.5 μM-500 μM, and the detection limit (LOD) is 0.14 μM (S/N = 3). The sensor exhibits good repeatability, stability, and selectivity and can be successfully used to analyze and detect PMZ in human serum and environmental water. The findings are scientifically significant for AN electrochemistry and the sensors have potential for in vivo medicamentosus monitoring in the future.
Collapse
Affiliation(s)
- Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cairui Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chenwei Wang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kai Fan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuqing Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lihua Li
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chaoxiang Ren
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Science and Engineering, Jiaxiing University, Jiaxing, 314001, China.
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| |
Collapse
|
9
|
Guo Z, Zhang Q, Xing R, Liu Z. Molecularly imprinted and cladded polymers for constructing a portable plasmonic immunoassay for peptides in biofluids. Chem Commun (Camb) 2023; 59:3075-3078. [PMID: 36807432 DOI: 10.1039/d2cc06550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Using two molecularly imprinted and cladded polymers (cMIPs), an inexpensive, fast and portable plasmonic immuno-sandwich assay (PISA) was rationally developed for high-specificity and ultra-sensitive detection of C-peptide in urine. The dual cMIPs-based PISA allowed healthy individuals to be distinguished from diabetes patients and exhibited several significant merits over existing immunoassays, holding great promise in clinical diagnosis.
Collapse
Affiliation(s)
- Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|