1
|
Miao W, Peng H, Cui S, Zeng J, Ma G, Zhu L, Lei Z, Xu Y. Fine nanostructure design of metal chalcogenide conversion-based cathode materials for rechargeable magnesium batteries. iScience 2024; 27:109811. [PMID: 38799585 PMCID: PMC11126976 DOI: 10.1016/j.isci.2024.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Magnesium-ion batteries (MIBs) a strong candidate to set off the second-generation energy storage boom due to their double charge transfer and dendrite-free advantages. However, the strong coulombic force and the huge diffusion energy barrier between Mg2+ and the electrode material have led to need for a cathode material that can enable the rapid and reversible de-insertion of Mg2+. So far, researchers have found that the sulfur-converted cathode materials have a greater application prospect due to the advantages of low price and high specific capacity, etc. Based on these advantages, it is possible to achieve the goal of increasing the magnesium storage capacity and cycling stability by reasonable modification of crystal or morphology. In this review, we focus on the application of a variety of sulfur-converted cathode materials in MIBs in recent years from the perspective of microstructural design, and provide an outlook on current challenges and future development.
Collapse
Affiliation(s)
- Wenxing Miao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuzhen Cui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingtian Zeng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits And Vegetables, Hubei Engineering University, Xiaogan, Hubei Province 432000, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Zhejiang 310024, China
| |
Collapse
|
2
|
Song X, Ge Y, Xu H, Bao S, Wang L, Xue X, Yu Q, Xing Y, Wu Z, Xie K, Zhu T, Zhang P, Liu Y, Wang Z, Tie Z, Ma J, Jin Z. Ternary Eutectic Electrolyte-Assisted Formation and Dynamic Breathing Effect of the Solid-Electrolyte Interphase for High-Stability Aqueous Magnesium-Ion Full Batteries. J Am Chem Soc 2024; 146:7018-7028. [PMID: 38412508 DOI: 10.1021/jacs.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Aqueous rechargeable magnesium batteries hold immense potential for intrinsically safe, cost-effective, and sustainable energy storage. However, their viability is constrained by a narrow voltage range and suboptimal compatibility between the electrolyte and electrodes. Herein, we introduce an innovative ternary deep eutectic Mg-ion electrolyte composed of MgCl2·6H2O, acetamide, and urea in a precisely balanced 1:1:7 molar ratio. This formulation was optimized by leveraging competitive solvation effects between Mg2+ ions and two organic components. The full batteries based on this ternary eutectic electrolyte, Mn-doped sodium vanadate (Mn-NVO) anode, and copper hexacyanoferrate cathode exhibited an elevated voltage plateau and high rate capability and showcased stable cycling performance. Ex-situ characterizations unveiled the Mg2+ storage mechanism of Mn-NVO involving initial extraction of Na+ followed by subsequent Mg2+ intercalation/deintercalation. Detailed spectroscopic analyses illuminated the formation of a pivotal solid-electrolyte interphase on the anode surface. Moreover, the solid-electrolyte interphase demonstrated a dynamic adsorption/desorption behavior, referred to as the "breathing effect", which substantially mitigated undesired dissolution and side reactions of electrode materials. These findings underscore the crucial role of rational electrolyte design in fostering the development of a favorable solid-electrolyte interphase that can significantly enhance compatibility between electrode materials and electrolytes, thus propelling advancements in aqueous multivalent-ion batteries.
Collapse
Affiliation(s)
- Xinmei Song
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Ge
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hao Xu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Songsong Bao
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Lei Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Xue
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qianchuan Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yizhi Xing
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zuoao Wu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kefeng Xie
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tangsong Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Pengbo Zhang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuzhu Liu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhangjian Wang
- Jiangsu BTR Nano Technology Co., Ltd., 519 Jiangdong Avenue, Jintan District, Changzhou, Jiangsu 213200, P. R. China
| | - Zuoxiu Tie
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Lu B, Lin C, Xiong H, Zhang C, Fang L, Sun J, Hu Z, Wu Y, Fan X, Li G, Fu J, Deng D, Wu Q. Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries. Molecules 2023; 28:molecules28104027. [PMID: 37241775 DOI: 10.3390/molecules28104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With the development of high-performance electrode materials, sodium-ion batteries have been extensively studied and could potentially be applied in various fields to replace the lithium-ion cells, owing to the low cost and natural abundance. As the key anode materials of sodium-ion batteries, hard carbons still face problems, such as poor cycling performance and low initial Coulombic efficiency. Owning to the low synthesis cost and the natural presence of heteroatoms of biomasses, biomasses have positive implications for synthesizing the hard carbons for sodium-ion batteries. This minireview mainly explains the research progress of biomasses used as the precursors to prepare the hard-carbon materials. The storage mechanism of hard carbons, comparisons of the structural properties of hard carbons prepared from different biomasses, and the influence of the preparation conditions on the electrochemical properties of hard carbons are introduced. In addition, the effect of doping atoms is also summarized to provide an in-depth understanding and guidance for the design of high-performance hard carbons for sodium-ion batteries.
Collapse
Affiliation(s)
- Bin Lu
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Chengjun Lin
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Haiji Xiong
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Chi Zhang
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Lin Fang
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Jiazhou Sun
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Ziheng Hu
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Yalong Wu
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Xiaohong Fan
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Guifang Li
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Jile Fu
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Dingrong Deng
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| | - Qihui Wu
- College of Marine Equipment and Mechanical Engineering, Xiamen Key Lab of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen 361021, China
| |
Collapse
|
4
|
Ding Q, Han T, Lin X, Zhou T, Liu J, Zhang H. A single-crystalline Co 3O 4 nanoparticle-assembled three-dimensional chain as an ultra-stable magnesium-ion battery cathode at different temperatures. Dalton Trans 2023; 52:7161-7165. [PMID: 37161790 DOI: 10.1039/d3dt01077e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Engineering optimal cathode materials is significant for developing stable magnesium-ion (Mg-ion) batteries. Here, we present a single-crystalline Co3O4 nanoparticle-chain three-dimensional (3D) micro/nanostructure as an Mg-ion battery cathode. The hierarchical morphology is composed of radial nanochains self-assembled by single-crystalline nanoparticles, thus significantly facilitating the transfer of electrons and ions. 3D single-crystalline Co3O4 as an Mg-ion battery cathode displays a stable capacity of 111.7 mA h g-1 after 200 cycles with a decay rate per cycle as low as 0.037%. After four rounds of testing, the rate performance remains stable with a tiny decrease from 125.94 to 124.78 mA h g-1. At temperatures of 45 °C and -5 °C, the cathode still displays good stability and rate-performance. Galvanostatic intermittent titration technique (GITT) results verify a low energy barrier of the Co3O4 cathode. It is expected that the single-crystalline nanoparticle-assembled 3D structure and the stable Mg-storage performance will find broad applications for developing other stable energy-storage materials and their batteries.
Collapse
Affiliation(s)
- Qian Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Xirong Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ting Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
5
|
Xue F, Fan F, Zhu Z, Zhang Z, Gu Y, Li Q. MoS 2/CoS heterostructures grown on carbon cloth as free-standing anodes for high-performance sodium-ion batteries. NANOSCALE 2023; 15:6822-6829. [PMID: 36960715 DOI: 10.1039/d3nr00866e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heterostructure construction with mixed transition metal sulfides has been recognized as a promising strategy to boost the performance of sodium-ion batteries (SIBs). Herein, a carbon-decorated MoS2/CoS heterostructure on carbon cloth (MoS2/CoS@CC) as a free-standing anode for SIBs was synthesized via a facile growth-carbonization strategy. In the composite, the generated built-in electric field at MoS2 and CoS heterointerfaces is beneficial for elevating the electron conductivity, thus expediting the Na-ion transport rate. Moreover, different redox potentials between MoS2 and CoS can effectively mitigate the mechanical strain induced by repeated Na+ de-/intercalation, thus ensuring the structural integrity. In addition, the carbon skeleton derived from the carbonization of glucose can enhance the conductivity of the electrode and maintain the structural integrity. Consequently, the resulting MoS2/CoS@CC electrode delivers a reversible capacity of 605 mA h g-1 at 0.5 A g-1 after 100 cycles, and prominent rate performance (366 mA h g-1 at 8.0 A g-1). Theoretical calculations also confirm that the establishment of a MoS2/CoS heterojunction can powerfully promote the electron conductivity, thereby enhancing the Na-ion diffusion kinetics.
Collapse
Affiliation(s)
- Fangfang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| | - Feifan Fan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| | - Zhicheng Zhu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| | - Zhigang Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| | - Yuefeng Gu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuhong Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|