1
|
Wu Y, Chen D, Zou G, Liu H, Zhu Z, Rogach AL, Yip HL. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS NANO 2025; 19:9740-9759. [PMID: 40053394 DOI: 10.1021/acsnano.5c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light-emitting colloidal lead halide perovskite nanocrystals (PeNCs) are considered promising candidates for next-generation vivid displays. However, the operational stability of light-emitting diodes (LEDs) based on PeNCs is still lower than those based on polycrystalline perovskite films, which requires an understanding of defect formation in PeNCs, both inside the crystal lattice ("bulk") and at the surface. Meanwhile, uncontrollable ion redistribution and electrochemical reactions under LED operation can be severe, which is also related to the bulk and surface quality of PeNCs, and a well-designed device architecture can boost carrier injection and balance radiative recombination. In this review, we consider bulk and surface reconstruction of PeNCs by enhancing the crystal lattice rigidity and rationally selecting the surface ligands. Degradation pathways of PeNCs under applied voltage are discussed, and strategies are considered to avoid both undesirable ion migration and electrochemical reactions in the PeNC films. Subsequently, other critical issues hindering the commercial application of PeNC LEDs are discussed, including the toxicity of Pb in lead halide perovskites, scale-up deposition of PeNC films, and design of active-matrix prototypes for high-resolution LED modules.
Collapse
Affiliation(s)
- Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Desui Chen
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
2
|
Gao H, He D, Chen Z, Gao P, He D, Li Z, Zhang X, Xiu J, Sun Q, Chen S, Wei SH, Yu SH, He Z. Disorder-order transition-induced unusual bandgap bowing effect of tin-lead mixed perovskites. SCIENCE ADVANCES 2025; 11:eads4038. [PMID: 39772692 PMCID: PMC11708898 DOI: 10.1126/sciadv.ads4038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Owing to the predominant merit of tunable bandgaps, tin-lead mixed perovskites have shown great potentials in realizing near-infrared optoelectronics and are receiving increasing attention. However, despite the merit, there is still a lack of fundamental understanding of the bandgap variation as a function of Sn/Pb ratio, mainly because the films are easy to segregate in terms of both composition and phase. Here, we report a fully stoichiometric synthesis of monocrystalline FAPb1-xSnxI3 nanocrystals as well as their atomic-scale imaging. On the basis of the systematic measurements of the monocrystalline materials, strain and Coulomb interaction-induced atomic ordering was revealed to be responsible for the unusual discontinuous bandgap jumping near x = 0.5 from the expected bowing effect. As a result, both FAPb0.6Sn0.4I3 and FAPb0.4Sn0.6I3 have the lowest bandgaps of around 1.27 electron volts, while that of FAPb0.5Sn0.5I3 is 1.33 electron volts. Correspondingly, their based light-emitting diodes can emit infrared lights with the wavelengths reaching 930 nanometers.
Collapse
Affiliation(s)
- Han Gao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Dong He
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Zehua Chen
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Peili Gao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Dongsheng He
- Core Research Facilities, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Zhaoning Li
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Xusheng Zhang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Jingwei Xiu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Qiang Sun
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Shuming Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
| | - Su-Huai Wei
- Eastern Institute of Technology, Ningbo 315200, China
| | - Shu-Hong Yu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, China
| | - Zhubing He
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, China
| |
Collapse
|
3
|
Quarti C, Gautier R, Zacharias M, Gansmuller A, Katan C. Nuclear Quadrupolar Resonance Structural Characterization of Halide Perovskites and Perovskitoids: A Roadmap from Electronic Structure Calculations for Lead-Iodide-Based Compounds. J Am Chem Soc 2025; 147:278-291. [PMID: 39718974 DOI: 10.1021/jacs.4c09877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Metal halide perovskites, including some of their related perovskitoid structures, form a semiconductor class of their own, which is arousing ever-growing interest from the scientific community. With halides being involved in the various structural arrangements, namely, pure corner-sharing MX6 (M is metal and X is halide) octahedra, for perovskite networks, or alternatively a combination of corner-, edge-, and/or face-sharing for related perovskitoids, they represent the ideal probe for characterizing the way octahedra are linked together. Well known for their inherently large quadrupolar constants, which is detrimental to the resolution of nuclear magnetic resonance spectroscopy, most abundant halide isotopes (35/37Cl, 79/81Br, 127I) are in turn attractive for magnetic field-free nuclear quadrupolar resonance (NQR) spectroscopy. Here, we investigate the possibility of exploiting NQR spectroscopy of halides to distinctively characterize the various metal halide structural arrangements, using density functional theory simulations. Our calculations nicely match the available experimental results. Furthermore, they demonstrate that compounds with different connectivities of their MX6 building blocks, including lower dimensionalities such as 2D networks, show distinct NQR signals in a broad spectral window. They finally provide a roadmap of the characteristic NQR frequency ranges for each octahedral connectivity, which may be a useful guide to experimentalists, considering the long acquisition procedures typical of NQR. We hope this work will encourage the incorporation of NQR spectroscopy to further our knowledge of the structural diversity of metal halides.
Collapse
Affiliation(s)
- Claudio Quarti
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Régis Gautier
- Univ Rennes, ENSCR, CNRS, ISCR-UMR6226, Université de Rennes, Rennes 35042, France
| | - Marios Zacharias
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON─UMR 6082, Rennes F-35000, France
| | - Axel Gansmuller
- CNRS, CRM2 UMR 7036, Université de Lorraine, Nancy F-54000, France
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR-UMR6226, Université de Rennes, Rennes 35042, France
| |
Collapse
|
4
|
Cheng H, Hao M, Ding S, He D, Zhang B, Wang K, Yang Q, Chen P, Wang Z, Xu H, Zhang C, Wang L, Steele JA. Organometallic Compound Stabilizes All-Inorganic Tin-Based Perovskite Nanocrystals Against Antisolvent Post-Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405327. [PMID: 39479735 DOI: 10.1002/smll.202405327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 12/28/2024]
Abstract
The isolation and purification of all-inorganic Sn-based perovskite nanocrystals (PNCs) remain troublesome, as common antisolvents accelerate the collapse of the optically active perovskite structure. Here, we mitigate such instabilities and endow strong resistance to antisolvent by incorporating the organometallic compound zinc diethyldithiocarbamate, Zn(DDTC)2, during the solution-based synthesis of all-inorganic CsSnI3 nanocrystals. Thiourea is shown to form through the thermal-driven conversion of Zn(DDTC)2 during synthesis, which binds to un-passivated Sn sites on the crystal surface and shields it from irreversible oxidation reactions. The CsSnI3 PNCs capped with thiourea show great stability after two purification cycles using methyl acetate, with negligible change in morphology, phase, and optical properties. Moreover, the modified PNCs are resistant to other commonly used antisolvents, like ethyl acetate, 1-pentanol, and isopropanol, offering a platform to explore all-inorganic Sn-based nanocrystalline thin films and optoelectronics.
Collapse
Affiliation(s)
- Huiyuan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Mengmeng Hao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shanshan Ding
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Dongxu He
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Bowei Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Kai Wang
- Nanomaterials Centre, School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Qishuo Yang
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zitong Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Hongzhe Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Chengxi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Julian A Steele
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Sanchez-Diaz J, Rodriguez-Pereira J, Das Adhikari S, Mora-Seró I. Synthesis of Hybrid Tin-Based Perovskite Microcrystals for LED Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403835. [PMID: 38973344 PMCID: PMC11425840 DOI: 10.1002/advs.202403835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Considerable focus on tin-based perovskites lies on substitution to leadhalide perovskites for the fabrication of eco-friendly optoelectronic devices. The major concern related to tin-based perovskite devices are mainly the stability and the efficiency. However, thinking on the final commercialization scope, other considerations such as precursor stability and cost are major factors to carry about. In this regard, this work presents a robust and facile synthesis of 2D A2SnX4 (A = 4-fluorophenethylammonium(4-FPEA); X = I, Br, I/Br) and 3D FASnI3 perovskite microcrystals following a developed synthesis strategy with low-cost starting materials. In this developed methodology, acetic acid is used as a solvent, which helps to protect from water by making a hydrophobic network over the perovskite surface, and hence provides sufficient ambient and long-term inert atmosphere stability of the microcrystals. Further, the microcrystals are recrystallized in thin films for LED application, allowing the fabrication of orange, near-infrared and purered emitting LEDs. The two-step recrystallized devices show better performance and stability in comparison to the reference devices made by using commercial precursors. Importantly, the developed synthesis methodology is defined as a generic method for the preparation of varieties of hybrid tin-based perovskites microcrystals and application in optoelectronic devices.
Collapse
Affiliation(s)
- Jesus Sanchez-Diaz
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| | - Jhonatan Rodriguez-Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Samrat Das Adhikari
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| |
Collapse
|
6
|
Gahlot K, Meijer J, Protesescu L. Structural and optical control through anion and cation exchange processes for Sn-halide perovskite nanostructures. NANOSCALE 2024; 16:5177-5187. [PMID: 38385551 PMCID: PMC10918525 DOI: 10.1039/d3nr06075f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Metal halide perovskite nanostructures, characterized by their ionic nature, present a compelling avenue for the tunability of dimensions and band gaps through facile compositional transformations involving both cationic and anionic exchange reactions. While post-synthetic ion-exchange processes have been extensively explored in Pb-halide perovskite nanocrystals, the inherent instability of Sn2+ has limited the exploration of such processes in Sn-halide perovskite nanostructures. In this study, we present a straightforward cation exchange process wherein 2D [R-NH3]2SnX4 Ruddlesden-Popper (RP) nanostructures with n = 1 transition to 3D ASnX3 nanocrystals at room temperature with the addition of A-cation oleate. In addition, anion exchange processes have been demonstrated for both 2D [R-NH3]2SnX4 RP nanostructures and 3D nanocrystals, showcasing transitions between iodide and bromide counterparts. Furthermore, we have fabricated a thin film of 2D [R-NH3]2SnX4 RP nanostructures for cation exchange, wherein A-cation diffusion through a liquid-solid interface facilitates the transformation into a 3D ASnX3 crystal. This investigation underscores the versatility of ion exchange processes in engineering the composition of Sn-halide perovskite nanostructures and, consequently, modulating their optical properties.
Collapse
Affiliation(s)
- Kushagra Gahlot
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.
| | - Julius Meijer
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.
| | - Loredana Protesescu
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
7
|
Li Y, Wang D, Yang Y, Ding C, Hu Y, Liu F, Wei Y, Liu D, Li H, Shi G, Chen S, Li H, Fuchimoto A, Tosa K, Hiroki U, Hayase S, Wei H, Shen Q. Stable Inorganic Colloidal Tin and Tin-Lead Perovskite Nanocrystals with Ultralong Carrier Lifetime via Sn(IV) Control. J Am Chem Soc 2024; 146:3094-3101. [PMID: 38269444 DOI: 10.1021/jacs.3c10060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Inorganic tin (Sn) perovskite nanocrystals offer a promising solution to the potential toxicity concerns associated with their established lead (Pb)-based counterparts. Yet, achieving their superior stability and optoelectronic properties remains an ongoing challenge. Here, we report a synthesis of high-symmetry α-phase CsSnI3 nanocrystals with an ultralong 278 ns carrier lifetime, exceeding previous benchmarks by 2 orders of magnitude through meticulous Sn(IV) control. The nanocrystals demonstrate excellent colloidal stability, uniform monodispersity, and a distinct exciton peak. Central to these outcomes is our designed solid-liquid antioxidation suspension of tri-n-octylphosphine (TOP) and zerovalent tin (Sn(0)) that fully addresses the unique coexisting oxygen-driven and solvent-driven Sn oxidation mechanisms in Sn perovskite nanocrystal synthesis. We uncover the largely undervalued function of TOP in mitigating oxygen-driven Sn oxidation and introduce Sn(0) powder to generate a synergistic antioxidation function with TOP, significantly reducing Sn(IV)-induced defects and distortions and contributing to enhanced optoelectronic properties. Strikingly, this approach also profoundly impacts inorganic Sn-Pb perovskite nanocrystals, boosting lifetimes by 2 orders of magnitude and increasing photoluminescence quantum yield over 100-fold to 35%. Our findings illuminate the potential of Sn-based nanocrystals for optoelectronic applications.
Collapse
Affiliation(s)
- Yusheng Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Dandan Wang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Yongge Yang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Chao Ding
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Yuyu Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Yuyao Wei
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Hua Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Guozheng Shi
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Shikai Chen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Hongshi Li
- Institute of New Energy Materials Chemistry, School of Materials Science and Engineering, Nankai University, TongYan Street 38, Jinnan District, Tianjin 300350, China
| | - Akihito Fuchimoto
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Keita Tosa
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Unno Hiroki
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Shuzi Hayase
- i-Powered Energy System Research Center (i-PERC), The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Huiyun Wei
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
8
|
Bodnarchuk MI, Feld LG, Zhu C, Boehme SC, Bertolotti F, Avaro J, Aebli M, Mir SH, Masciocchi N, Erni R, Chakraborty S, Guagliardi A, Rainò G, Kovalenko MV. Colloidal Aziridinium Lead Bromide Quantum Dots. ACS NANO 2024. [PMID: 38320982 PMCID: PMC10883123 DOI: 10.1021/acsnano.3c11579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.
Collapse
Affiliation(s)
- Maryna I Bodnarchuk
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Leon G Feld
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Chenglian Zhu
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Simon C Boehme
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Jonathan Avaro
- Centre for X-ray Analytics & Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
| | - Marcel Aebli
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Showkat Hassan Mir
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Antonietta Guagliardi
- Istituto di Cristallografia and To.Sca.Lab, Consiglio Nazionale delle Ricerche, via Valleggio 11, Como 22100, Italy
| | - Gabriele Rainò
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|