1
|
Zhu H, Fang G, Nie N, Xie J, Tseng PH, Xiong Z, Jiang D, Mao CJ, Zhu JJ, Chew SY, Chen YC. Breathing Laser-Spectral Mapping of Cavity-Enhanced Redox Reactions with Subcellular Resolution. ACS NANO 2025; 19:10955-10965. [PMID: 40062912 PMCID: PMC11948617 DOI: 10.1021/acsnano.4c16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Precise and dynamic observation of redox reactions in living organisms holds significant importance for the study of physiological processes and pathological mechanisms. However, the current technologies still make it challenging to monitor this process in a nondestructive and highly sensitive manner. Herein, we introduced a bioactive laser approach for ultrasensitive and real-time monitoring of intracellular redox reactions. Resazurin, as a popular cell viability assay reagent, has lasing behaviors and photostability, which makes it suitable for the development of bioactive lasers. Due to the strong interactions of light and matter within the laser cavity, subtle changes in resazurin concentration during the redox reaction can be translated into detectable wavelength shifts in the lasing spectrum. With narrow laser peaks, the sensing resolution can reach down to 30 pM per 10 pm wavelength shift. Combined with a scanning platform, we mapped the intracellular and intercellular heterogeneities in metabolism. Further applications in cell identification, oxidative stress assessment, and drug evaluation revealed the universal applicability of this method in cell assays and biomedical analysis, providing insights into disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Hui Zhu
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
- Key
Laboratory
of Structure and Functional Regulation of Hybrid Materials (Ministry
of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guocheng Fang
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ningyuan Nie
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Jun Xie
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Po-Hao Tseng
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Zhongshu Xiong
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Dechen Jiang
- State Key
Laboratory of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chang-Jie Mao
- Key
Laboratory
of Structure and Functional Regulation of Hybrid Materials (Ministry
of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun-Jie Zhu
- State Key
Laboratory of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sing Yian Chew
- Lee
Kong
Chian School of Medicine, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yu-Cheng Chen
- School of
Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| |
Collapse
|
2
|
Xu Z, Yan Y, Wang X, Wang X, Zhou Z, Yang X, Zhai T. Determination of Enantiomeric Excess by Optofluidic Microlaser near Exceptional Point. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308362. [PMID: 38072636 PMCID: PMC10870016 DOI: 10.1002/advs.202308362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 02/17/2024]
Abstract
Enantiomeric excess (ee) is an essential indicator of chiral drug purification in the pharmaceutical industry. However, to date the ee determination of unknown concentration enantiomers generally involves two separate techniques for chirality and concentration measurement. Here, a whispering-gallery mode (WGM) based optofluidic microlaser near exceptional point to achieve the ee determination under unknown concentration with a single technique is proposed. Exceptional point induces the unidirectional WGM lasing, providing the optofluidic microlaser with the novel capability to measure chirality by polarization, in addition to wavelength-based concentration detection. The dual-parameters detection of optofluidic microlaser empowers it to achieve ee determination of various unknown enantiomers without additional concentration measurements, a feat that is challenging to accomplish with other methods. Featuring the sensitivity enhancement and miniature structure of the WGM sensors, the obtained chiroptical response of the present approach is ≈30-fold higher than that of the conventional optical rotation-based polarimeter, and the reagent consumption is reduced by three orders of magnitude.
Collapse
Affiliation(s)
- Zhiyang Xu
- Department of Physics and Optoelectronic EngineeringFaculty of ScienceBeijing University of TechnologyBeijing100124China
- Institute of Laser EngineeringFaculty of Materials and ManufacturingBeijing University of TechnologyBeijing100124China
| | - Yinzhou Yan
- Institute of Laser EngineeringFaculty of Materials and ManufacturingBeijing University of TechnologyBeijing100124China
| | - Xingyuan Wang
- College of Mathematics and PhysicsBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaolei Wang
- Department of Physics and Optoelectronic EngineeringFaculty of ScienceBeijing University of TechnologyBeijing100124China
| | - Zhixiang Zhou
- Faculty of Environment and LifeBeijing University of TechnologyBeijing100124China
| | - Xi Yang
- State Key Laboratory for Mesoscopic Physics and School of PhysicsPeking UniversityBeijing100871China
| | - Tianrui Zhai
- Department of Physics and Optoelectronic EngineeringFaculty of ScienceBeijing University of TechnologyBeijing100124China
| |
Collapse
|
3
|
Gong C, Yang X, Tang SJ, Zhang QQ, Wang Y, Liu YL, Chen YC, Peng GD, Fan X, Xiao YF, Rao YJ, Gong Y. Submonolayer biolasers for ultrasensitive biomarker detection. LIGHT, SCIENCE & APPLICATIONS 2023; 12:292. [PMID: 38052775 DOI: 10.1038/s41377-023-01335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed optical microcavities with high Q-factor, great repeatability, and ultralow cost, which enables whispering-gallery laser emission to detect biomarkers. It is found that the sensing performance strongly depends on the number of gain molecules. The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection (LOD) when compared to saturated monolayer lasers. We further achieve an ultrasensitive immunoassay for a Parkinson's disease biomarker, alpha-synuclein (α-syn), with a lower LOD of 0.32 pM in serum, which is three orders of magnitude lower than the α-syn concentration in the serum of Parkinson's disease patients. Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.
Collapse
Affiliation(s)
- Chaoyang Gong
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education of China), School of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xi Yang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Shui-Jing Tang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Qian-Qian Zhang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yanqiong Wang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yi-Ling Liu
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gang-Ding Peng
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
| | - Yun-Jiang Rao
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
- Research Centre for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou, Zhejiang, 310000, China.
| | - Yuan Gong
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
4
|
Tong J, Ge K, Xu Z, Zhai T. Switchable whispering gallery mode lasing via phase transition. OPTICS LETTERS 2023; 48:5161-5164. [PMID: 37773410 DOI: 10.1364/ol.501359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Combining phase-transition materials with optical microcavities may advance the applications of whispering-gallery mode (WGM) lasing in performance customization, sensing, and optical switching. In this study, switchable WGM lasing based on phase transition is reported. The device is designed by introducing the phase-transition hydrogel into the capillary microcavity. After approaching the phase-transition point in hydrogel, the number of WGM lasing modes decreases sharply with a significant blueshift in the wavelength. The phenomenon is caused by the increase in light scattering and decrease in effective refractive index of the device. Furthermore, single-mode lasing is obtained by manipulating the phase transition, which exhibits superior reversibility. This study may pave the way for designing and multifunctioning of novel WGM lasing in photonic devices.
Collapse
|
5
|
Sarkar D, Dannenberg PH, Martino N, Kim KH, Yun SH. Precise photoelectrochemical tuning of semiconductor microdisk lasers. ADVANCED PHOTONICS 2023; 5:056004. [PMID: 38993283 PMCID: PMC11238523 DOI: 10.1117/1.ap.5.5.056004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Micro- and nano-disk lasers have emerged as promising optical sources and probes for on-chip and free-space applications. However, the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths. To address this, we developed a photoelectrochemical (PEC) etching-based technique that enables us to precisely tune the lasing wavelength with sub-nanometer accuracy. We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution. Using this technique, we produced microlasers on a chip and isolated particles with distinct lasing wavelengths. Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.
Collapse
Affiliation(s)
- Debarghya Sarkar
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, United States
| | - Paul H Dannenberg
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, United States
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicola Martino
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, United States
| | - Kwon-Hyeon Kim
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, United States
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, United States
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|