1
|
Chen W, Zhu S, Cui J, Wang C, Wang F, Dai M, Liu H, Yang Y, Duan R, Chae SH, Liu Z, Wang QJ. Etchless InSe Cavities Based on Bound States in the Continuum for Enhanced Exciton-Mediated Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500226. [PMID: 39967375 DOI: 10.1002/adma.202500226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Recently, fervent research interest is sparked to indium selenide (γ-InSe) due to its dazzling optical and electronic properties. The direct bandgap in the near-infrared (NIR) range ensures efficient carrier recombination in InSe, promoting impressive competency for lavish NIR applications. Nevertheless, the photoluminescence (PL) efficiency of InSe is significantly limited by out-of-plane (OP) excitons, adverse to practical devices. Herein, a facile and effective solution is proposed by introducing photonic bound-states-in-the-continuum (BIC) modes to enhance excitons in InSe through strengthened exciton-photon coupling. This cavity is constructed simply by patterning a polymer grating onto the InSe flake without an etching process, achieving an impressive PL enhancement of over 200 times. By adjusting the cavity resonance wavelength, it can selectively amplify the exciton emission or the exciton-exciton scattering process, which is not observable off-cavity at room temperature. Additionally, the second harmonic generation (SHG) process in InSe can also be largely enhanced by over 400 times on the cavity. Notably, the etchless cavity design can be further extended to other nanostructures beyond grating. This research presents a feasible and efficient approach to enhancing the optical performance of OP excitons, paving a prospective avenue for advanced linear and nonlinear photonic devices.
Collapse
Affiliation(s)
- Wenduo Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jieyuan Cui
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chongwu Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fakun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mingjin Dai
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hanyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuhui Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sang Hoon Chae
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zheng Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qi Jie Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Chen PL, Ahmed T, Kuo C, Lu CC, Lien DH, Liu CH. Emerging 2D Materials and Van der Waals Heterostructures for Advanced NIR, SWIR, and MWIR Emitters. SMALL METHODS 2025; 9:e2401550. [PMID: 39668475 DOI: 10.1002/smtd.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/10/2024] [Indexed: 12/14/2024]
Abstract
Infrared (IR) emitters have drawn considerable attention for applications in deep-tissue imaging, optical communication, and thermal sensing. While III-V and II-VI semiconductors are traditionally used in these emitters, their reliance on complex epitaxial growth to overcome lattice mismatch and thermal expansion challenges leads to intricate device structures and limits their integrability. In contrast, 2D materials provide a more flexible solution, offering diverse optical bandgaps and the ability to be vertically restacked in arbitrary crystal orientations to form complex van der Waals (vdW) heterostructures, which can be further integrated onto diverse device platforms. This review highlights recent advancements in 2D-based IR emitters, focusing on the NIR, SWIR, and MWIR regions. It discusses the photoluminescence properties of 2D materials and innovative vdW engineering techniques used to develop IR light-emitting diodes (LEDs). The review also explores how external stimuli, such as electric fields and strain, can enable tunable emission wavelengths and examines the integration of 2D-based emitters with photonic structures, like cavities and waveguides, to create hybrid photonic devices. Finally, the review addresses the challenges and prospects of 2D-based IR technologies, highlighting their potential to transform IR light sources across various applications.
Collapse
Affiliation(s)
- Po-Liang Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tanveer Ahmed
- Institute of Electronics, National Yang-Ming Chiao Tung University, Hsinchu, 30013, Taiwan
| | - Ching Kuo
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Chun Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Der-Hsien Lien
- Institute of Electronics, National Yang-Ming Chiao Tung University, Hsinchu, 30013, Taiwan
| | - Chang-Hua Liu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
3
|
Xu K, Zou Z, Li W, Zhang L, Ge M, Wang T, Du W. Strong Linearly Polarized Light Emission by Coupling Out-of-Plane Exciton to Anisotropic Gap Plasmon Nanocavity. NANO LETTERS 2024; 24:3647-3653. [PMID: 38488282 DOI: 10.1021/acs.nanolett.3c04899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With exceptional quantum confinement, 2D monolayer semiconductors support a strong excitonic effect, making them an ideal platform for exploring light-matter interactions and as building blocks for novel optoelectronic devices. Different from the well-known in-plane excitons in transition metal dichalcogenides (TMD), the out-of-plane excitons in indium selenide (InSe) usually show weak emission, which limits their applications as light sources. Here, by embedding InSe in an anisotropic gap plasmon nanocavity, we have realized plasmon-enhanced linearly polarized photoluminescence with an anisotropic ratio up to ∼140, corresponding to degree of polarization (DoP) of ∼98.6%. Such polarization selectivity, originating from the polarization-dependent plasmonic enhancement supported by the "nanowire-on-mirror" nanocavity, can be well tuned by the InSe thickness. Moreover, we have also realized an InSe-based light-emitting diode with polarized electroluminescence. Our research highlights the role of excitonic dipole orientation in designing nanophotonic devices and paves the way for developing InSe-based optoelectronic devices with polarization control.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Zhen Zou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wenfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|