1
|
Wu Y, Chen D, Zou G, Liu H, Zhu Z, Rogach AL, Yip HL. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS NANO 2025; 19:9740-9759. [PMID: 40053394 DOI: 10.1021/acsnano.5c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light-emitting colloidal lead halide perovskite nanocrystals (PeNCs) are considered promising candidates for next-generation vivid displays. However, the operational stability of light-emitting diodes (LEDs) based on PeNCs is still lower than those based on polycrystalline perovskite films, which requires an understanding of defect formation in PeNCs, both inside the crystal lattice ("bulk") and at the surface. Meanwhile, uncontrollable ion redistribution and electrochemical reactions under LED operation can be severe, which is also related to the bulk and surface quality of PeNCs, and a well-designed device architecture can boost carrier injection and balance radiative recombination. In this review, we consider bulk and surface reconstruction of PeNCs by enhancing the crystal lattice rigidity and rationally selecting the surface ligands. Degradation pathways of PeNCs under applied voltage are discussed, and strategies are considered to avoid both undesirable ion migration and electrochemical reactions in the PeNC films. Subsequently, other critical issues hindering the commercial application of PeNC LEDs are discussed, including the toxicity of Pb in lead halide perovskites, scale-up deposition of PeNC films, and design of active-matrix prototypes for high-resolution LED modules.
Collapse
Affiliation(s)
- Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Desui Chen
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
2
|
Guo C, Bi C, Wei S, Ren K, Huang X, Tao L, Wang X, de Leeuw NH, Wang W. Highly Efficient and Stable CsPbI 3 Perovskite Quantum Dots Light-Emitting Diodes Through Synergistic Effect of Halide-Rich Modulation and Lattice Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409630. [PMID: 39831832 DOI: 10.1002/smll.202409630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Currently, CsPbI3 quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI3 QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair. First, a ternary-precursor method is employed to better control the feed ratio of Cs/Pb/I and create a halide-rich environment. Second a solvent-free solid-liquid reaction employing a multifunctional guanidinium iodide (GAI) additive is used after purification to repair iodine vacancies and partially replace surface Cs atoms, thereby effectively modifying its tolerance factor. Additionally, this short-chain GA+ can be used as the surface ligand to improve the conductivity of the QDs and suppress trap-assisted non-radiative Auger recombination. Consequently, PeLEDs based on GAI-QDs exhibit a great maximum external quantum efficiency (EQE) of 27.1% and an operational half-lifetime (T50) of 1001.1 min at an initial luminance of 100 cd m-2.
Collapse
Affiliation(s)
- Chiyu Guo
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, P. R. China
| | - Chenghao Bi
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| | - Shibo Wei
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ke Ren
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xuexuan Huang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Liang Tao
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xingyu Wang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
3
|
Liu Y, Ma Z, Zhang J, He Y, Dai J, Li X, Shi Z, Manna L. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415606. [PMID: 39887795 DOI: 10.1002/adma.202415606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Light-emitting diodes (LEDs) based on halide perovskite nanocrystals have attracted extensive attention due to their considerable luminescence efficiency, wide color gamut, high color purity, and facile material synthesis. Since the first demonstration of LEDs based on MAPbBr3 nanocrystals was reported in 2014, the community has witnessed a rapid development in their performances. In this review, a historical perspective of the development of LEDs based on halide perovskite nanocrystals is provided and then a comprehensive survey of current strategies for high-efficiency lead-based perovskite nanocrystals LEDs, including synthesis optimization, ion doping/alloying, and shell coating is presented. Then the basic characteristics and emission mechanisms of lead-free perovskite and perovskite-related nanocrystals emitters in environmentally friendly LEDs, from the standpoint of different emission colors are reviewed. Finally, the progress in LED applications is covered and an outlook of the opportunities and challenges for future developments in this field is provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanni He
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
4
|
Chandra S, Mustafa MA, Ghadir K, Bansal P, Deorari M, Alhameedi DY, Alubiady MHS, Al-Ani AM, Rab SO, Jumaa SS, Abosaoda MK. Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9633-9674. [PMID: 39073420 DOI: 10.1007/s00210-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
This review paper provides an in-depth analysis of Perovskite quantum dots (PQDs), a class of nanomaterials with unique optical and electronic properties that hold immense potential for various technological applications. The paper delves into the structural characteristics, synthesis methods, and characterization techniques of PQDs, highlighting their distinct advantages over other Quantum Dots (QDs). Various applications of PQDs in fields such as solar cells, LEDs, bioimaging, photocatalysis, and sensors are discussed, showcasing their versatility and promising capabilities. The ongoing advancements in PQD research and development point towards a bright future for these nanostructures in revolutionizing diverse industries and technologies.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Electrical Engineering, GLA University, Mathura, 281406, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | - Kamil Ghadir
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | | | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Salih Jumaa
- Department of Medical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Li H, Zhu X, Zhang D, Gao Y, Feng Y, Ma Z, Huang J, He H, Ye Z, Dai X. Thermal management towards ultra-bright and stable perovskite nanocrystal-based pure red light-emitting diodes. Nat Commun 2024; 15:6561. [PMID: 39095426 PMCID: PMC11297279 DOI: 10.1038/s41467-024-50634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the promising candidacy of perovskite nanocrystals for light-emitting diodes, their pure red electroluminescence is hindered by low saturated luminance, severe external quantum efficiency roll-off, and inferior operational stability. Here, we report ultra-bright and stable pure red light-emitting diodes by manipulating Joule heat generation in the nanocrystal emissive layer and thermal management within the device. Diphenylphosphoryl azide-mediated regulation of the nanocrystal surface synergistically enhances the optical properties and carrier transport of the emissive layer, enabling reduced Joule heat generation and thus lowering the working temperature. These merits inhibit ion migration of the CsPb(Br/I)3 nanocrystal film, promising excellent spectra stability. Combined with the highly thermal-conductive sapphire substrates and implementation of pulse-driving mode, the pure red light-emitting diodes exhibit an ultra-bright luminance of 390,000 cd m-2, a peak external quantum efficiency of 25%, suppressed efficiency roll-off, an operational half-life of 20 hours, and superior spectral stability within 15 A cm-2.
Collapse
Affiliation(s)
- Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xiaofang Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| |
Collapse
|
6
|
Muzzillo CP, Ciobanu CV, Moore DT. High-entropy alloy screening for halide perovskites. MATERIALS HORIZONS 2024; 11:3662-3694. [PMID: 38767287 DOI: 10.1039/d4mh00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As the concept of high-entropy alloying (HEA) extends beyond metals, new materials screening methods are needed. Halide perovskites (HP) are a prime case study because greater stability is needed for photovoltaics applications, and there are 322 experimentally observed HP end-members, which leads to more than 1057 potential alloys. We screen HEAHP by first calculating the configurational entropy of 106 equimolar alloys with experimentally observed end-members. To estimate enthalpy at low computational cost, we turn to the delta-lattice parameter approach, a well-known method for predicting III-V alloy miscibility. To generalize the approach for non-cubic crystals, we introduce the parameter of unit cell volume coefficient of variation (UCV), which does a good job of predicting the experimental HP miscibility data. We use plots of entropy stabilization versus UCV to screen promising alloys and identify 102 HEAHP of interest.
Collapse
Affiliation(s)
| | | | - David T Moore
- National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
7
|
Song Y, Lan S, Yang B, Zheng Y, Zhou Z, Nan CW, Lin YH. High-Entropy Design for 2D Halide Perovskite. J Am Chem Soc 2024; 146:19748-19755. [PMID: 38980287 DOI: 10.1021/jacs.4c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Hybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)2PbBr4 two-dimensional (2D) hybrid perovskite. Our results demonstrate that the high-entropy effect favors the stabilization of the hybrid perovskite phase and facilitates a simple crystallization process without precise control of the cooling rate to prepare regular crystals. Moreover, high-entropy 2D perovskite crystals exhibit tunable energy band gaps, broadband emission, and a long carrier lifetime. Meanwhile, the high-entropy composition almost maintains the initial crystal structure in deionized water for 18 h while the original (CHA)2PbBr4 crystal mostly decomposes, suggesting obviously improved humidity stability. This work offers a facile approach to synthesize humidity-stable hybrid perovskites under mild conditions, accelerating relevant preparation of optoelectronics and light-emitting devices and facilitating the ultimate commercialization of halide perovskite.
Collapse
Affiliation(s)
- Yan Song
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Shun Lan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Bingbing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yunpeng Zheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Zhifang Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yuan-Hua Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
8
|
Yang F, Dong W, Kang C, Zhu Z, Zeng Q, Zheng W, Zhang X, Yang B. Solvent-Reconstructed Interface That Enhances Light Out-Coupling in Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. NANO LETTERS 2024; 24:7012-7018. [PMID: 38820129 DOI: 10.1021/acs.nanolett.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Light management is critical to maximizing the external quantum efficiency of perovskite light-emitting diodes (PeLEDs), but strategies for enhancing light out-coupling are typically complex and expensive. Here, using a facile solvent treatment strategy, we create a layer of lithium fluoride (LiF) nanoislands that serve as a template to reconstruct the light-extracting interfaces for PeLEDs. The nanoisland interface rearranges the near-field light distribution in order to maximize the efficiency of internal light extraction. With the proper adjustment of the nanoisland size and distribution, we have achieved an optimal balance between charge injection and light out-coupling, resulting in bright, pure-red quasi-two-dimensional PeLEDs with a 21.8% peak external quantum efficiency.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Dong
- Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130012, P. R. China
| | - Chunyuan Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoyu Zhang
- Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Zhou X, Yang M, Shen C, Lian L, Hou L, Zhang J. Synchronously Polishing the Lead-Rich Surface and Passivating Surface Defects of CsPb(Br/I) 3 Quantum Dots for High-Performance Pure-Red PeLEDs. NANO LETTERS 2024; 24:3719-3726. [PMID: 38484387 DOI: 10.1021/acs.nanolett.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mixed-halide CsPb(Br/I)3 perovskite quantum dots (QDs) are regarded as one of the most promising candidates for pure-red perovskite light-emitting diodes (PeLEDs) due to their precise spectral tuning property. However, the lead-rich surface of these QDs usually results in halide ion migration and nonradiative recombination loss, which remains a great challenge for high-performance PeLEDs. To solve the above issues, we employ a chelating agent of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid hydrate (DOTA) to polish the lead-rich surface of the QDs and meanwhile introduce a new ligand of 2,3-dimercaptosuccinic acid (DMSA) to passivate surface defects of the QDs. This synchronous post-treatment strategy results in high-quality CsPb(Br/I)3 QDs with suppressed halide ion migration and an improved photoluminescence quantum yield, which enables us to fabricate spectrally stable pure-red PeLEDs with a peak external quantum efficiency of 23.2%, representing one of the best performance pure-red PeLEDs based on mixed-halide CsPb(Br/I)3 QDs reported to date.
Collapse
Affiliation(s)
- Xin Zhou
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd., Foshan 528000, China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Chao Shen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Linyuan Lian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Yang X, Wang S, Hou Y, Wang Y, Zhang T, Chen Y, Chen G, Zhong C, Fan X, Kong X, Wu T, Lu Y, Lin Y, Chen Z. Dual-Ligand Red Perovskite Ink for Electrohydrodynamic Printing Color Conversion Arrays over 2540 dpi in Near-Eye Micro-LED Display. NANO LETTERS 2024; 24:3661-3669. [PMID: 38408021 DOI: 10.1021/acs.nanolett.3c04927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 μm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
| | - Shuli Wang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
| | - Yaqi Hou
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361102, China
| | - Yuhui Wang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
| | - Tianqi Zhang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
| | - Yihang Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
| | - Guolong Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
| | - Chenming Zhong
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
| | - Xiaotong Fan
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
| | - Xuemin Kong
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
| | - Tingzhu Wu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| | - Yijun Lu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
| | - Yue Lin
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| | - Zhong Chen
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| |
Collapse
|