1
|
Wang S, Li L. Considering the impact of the chirality of therapeutic nanoparticles on cancer therapy. Nanomedicine (Lond) 2024; 19:2331-2334. [PMID: 39316556 PMCID: PMC11492700 DOI: 10.1080/17435889.2024.2403320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
"Inadequate understanding of chirality has potentially disastrous consequences. "Genius on the left, madman on the right" is not an exaggerated verse in the field of chiral research, but a realistic warning…".
Collapse
Affiliation(s)
- Shaobo Wang
- Beijing Key Laboratory of Micro-Nano Energy & Sensor, Center for High-Entropy Energy & Systems, Beijing Institute of Nanoenergy & Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges & Universities Key Laboratory of Blue Energy & Systems Integration, Institute of Science & Technology for Carbon Peak & Neutrality, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Linlin Li
- Beijing Key Laboratory of Micro-Nano Energy & Sensor, Center for High-Entropy Energy & Systems, Beijing Institute of Nanoenergy & Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges & Universities Key Laboratory of Blue Energy & Systems Integration, Institute of Science & Technology for Carbon Peak & Neutrality, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
- School of Nanoscience & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Liu F, Li X, Li Y, Xu S, Guo C, Wang L. Visualization of drug release in a chemo-immunotherapy nanoplatform via ratiometric 19F magnetic resonance imaging. Chem Sci 2024:d4sc03643c. [PMID: 39364076 PMCID: PMC11446317 DOI: 10.1039/d4sc03643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Visualization of drug release in vivo is crucial for improving therapeutic efficacy and preventing inappropriate medication dosing, yet, challenging. Herein, we report a pH-activated chemo-immunotherapy nanoplatform with visualization of drug release in vivo by ratiometric 19F magnetic resonance imaging (19F MRI). This nanoplatform consists of ultra-small histamine-modified perfluoro-15-crown-5-ether (PFCE) nanodroplets loaded with doxorubicin (Dox), which are packaged in trifluoromethyl-containing metal-organic assemblies via coordination-driven self-assembly. The chemical shifts of two types of 19F atoms in the nanoplatform are significantly different in 19F nuclear magnetic resonance (NMR) spectra, which facilitates the implementation of ratiometric 19F MRI without any signal crosstalk. In an acidic tumor microenvironment, this nanoplatform gradually degrades, which results in a sustained drug release with a real-time change in the ratiometric 19F MRI signal. Therefore, a linear correlation between the Dox release profile and ratiometric 19F MRI signal is established to visualize Dox release. Moreover, the pH-triggered disassembly of the nanoplatform leads to cell pyroptosis, which evokes immunogenic cell death (ICD), resulting in the regression of the primary tumor and inhibition of distal tumor growth. This study provides the proof-of-concept application of ratiometric 19F MRI to visualize drug release in vivo.
Collapse
Affiliation(s)
- Fanqi Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xindi Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yumin Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
3
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
4
|
Li DY, Liang S, Wen JH, Tang JX, Deng SL, Liu YX. Extracellular HSPs: The Potential Target for Human Disease Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072361. [PMID: 35408755 PMCID: PMC9000741 DOI: 10.3390/molecules27072361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Collapse
Affiliation(s)
- Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| |
Collapse
|
5
|
Wang S, Zhao Y, Zhang Z, Zhang Y, Li L. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnology 2021; 19:220. [PMID: 34294083 PMCID: PMC8299636 DOI: 10.1186/s12951-021-00965-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Chirality is a fundamental characteristic of natural molecules and a crucial factor in the biochemical reactions of living cells and organisms. Recently, researchers have successfully introduced chiral molecules to the surfaces of nanomaterials, creating chiral nanomaterials that exhibit an upscaling of chiral behavior from the molecular scale to the nanoscale. These chiral nanomaterials can selectively induce autophagy, apoptosis, and photothermal ablation in tumor cells based on their chirality, making them promising for application in anti-tumor therapy. However, these interesting and important phenomena have hitherto received little attention. Accordingly, we herein present a review of recent research progress in the field of chiral nanomaterials for tumor therapy along with brief looks at the mechanistic details of their actions. Finally, the current challenges and future perspectives of chiral nanomaterials in terms of maximizing their potential in tumor therapy are discussed. Thus, this review provides a helpful introduction to the design of chiral nanomaterials and will hopefully highlight the importance of chirality in tumor therapy. ![]()
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Juncheng XuHong
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Chen M, Ding Y, Ke Y, Zeng Y, Liu N, Zhong Y, Hua X, Li Z, Xiong Y, Wu C, Yu H. Anti-tumour activity of zinc ionophore pyrithione in human ovarian cancer cells through inhibition of proliferation and migration and promotion of lysosome-mitochondrial apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:824-833. [PMID: 32456481 DOI: 10.1080/21691401.2020.1770266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zinc pyrithione (ZPT) is widely used as an antimicrobial. Zinc is a necessary trace element of the human whose homeostasis associated with several cancers. However, the anticancer effect of increased Zinc in ovarian cancer is still unclear. This study focussed on the anti-tumour effects of ZPT combined with Zinc in SKOV3 and SKOV3/DDP cells. The cell viability, apoptosis, migration, and invasion assays were detected by CCK-8, flow cytometry, wound healing and transwell assay, respectively. The distribution of Zinc in cells was monitored by staining of Zinc fluorescent dye and lysosome tracker. The changes in lysosomal membrane stability were reflected by acridine orange fluorescence and cathepsin D reposition. Expression of the proteins about invasion and apoptosis was evaluated by western blot. The results indicated that ZPT combined with Zinc could notably reduce cell viability, inhibit migration and invasion in SKOV3 and SKOV3/DDP cells. Besides, ZPT performed as a Zinc carrier targeted lysosomes, caused the increase of its membrane permeability and the release of cathepsin D accompanied by mitochondrial apoptosis in SKOV3/DDP cells. In conclusion, our work suggests that ZPT combined with Zinc could inhibit proliferation, migration, invasion, and promote apoptosis by trigger the lysosome-mitochondrial apoptosis pathway in ovarian carcinoma.
Collapse
Affiliation(s)
- Mengge Chen
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanpeng Ding
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Ke
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifei Zeng
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nuomin Liu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinying Hua
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Li
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yudi Xiong
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaoyan Wu
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
A robust zirconium amino acid metal-organic framework for proton conduction. Nat Commun 2018; 9:4937. [PMID: 30467390 PMCID: PMC6250719 DOI: 10.1038/s41467-018-07414-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Proton conductive materials are of significant importance and highly desired for clean energy-related applications. Discovery of practical metal-organic frameworks (MOFs) with high proton conduction remains a challenge due to the use of toxic chemicals, inconvenient ligand preparation and complication of production at scale for the state-of-the-art candidates. Herein, we report a zirconium-MOF, MIP-202(Zr), constructed from natural α-amino acid showing a high and steady proton conductivity of 0.011 S cm-1 at 363 K and under 95% relative humidity. This MOF features a cost-effective, green and scalable preparation with a very high space-time yield above 7000 kg m-3 day-1. It exhibits a good chemical stability under various conditions, including solutions of wide pH range and boiling water. Finally, a comprehensive molecular simulation was carried out to shed light on the proton conduction mechanism. All together these features make MIP-202(Zr) one of the most promising candidates to approach the commercial benchmark Nafion.
Collapse
|
9
|
Ma B, Wu Y, Zhang S, Wang S, Qiu J, Zhao L, Guo D, Duan J, Sang Y, Li L, Jiang H, Liu H. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties. ACS NANO 2017; 11:1973-1981. [PMID: 28145694 DOI: 10.1021/acsnano.6b08140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.
Collapse
Affiliation(s)
- Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing 100191, China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Shicai Wang
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Lili Zhao
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Daidong Guo
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Huaidong Jiang
- School of Physical Science and Technology, Shanghai Tech University , Shanghai 201210, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China
| |
Collapse
|
10
|
Scott EA, Karabin NB, Augsornworawat P. Overcoming Immune Dysregulation with Immunoengineered Nanobiomaterials. Annu Rev Biomed Eng 2017; 19:57-84. [PMID: 28226216 DOI: 10.1146/annurev-bioeng-071516-044603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune system is governed by an immensely complex network of cells and both intracellular and extracellular molecular factors. It must respond to an ever-growing number of biochemical and biophysical inputs by eliciting appropriate and specific responses in order to maintain homeostasis. But as with any complex system, a plethora of false positives and false negatives can occur to generate dysregulated responses. Dysregulated immune responses are essential components of diverse inflammation-driven pathologies, including cancer, heart disease, and autoimmune disorders. Nanoscale biomaterials (i.e., nanobiomaterials) have emerged as highly customizable platforms that can be engineered to interact with and direct immune responses, holding potential for the design of novel and targeted approaches to redirect or inhibit inflammation. Here, we present recent developments of nanobiomaterials that were rationally designed to target and modulate inflammatory cells and biochemical pathways for the treatment of immune dysregulation.
Collapse
Affiliation(s)
- Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Punn Augsornworawat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|